scispace - formally typeset
Search or ask a question

Showing papers in "Indoor Air in 2010"


Journal ArticleDOI
TL;DR: A source model is developed to provide the thermo-fluid conditions of the exhaled air from the breathing and talking processes and can be used to describe the disease source due to breathing andtalking.
Abstract: UNLABELLED The exhaled air of infected humans is one of the prime sources of contagious viruses. The exhaled air comes from respiratory events such as the coughing, sneezing, breathing and talking. Accurate information on the thermo-fluid characteristics of the exhaled airflow can be important for prediction of infectious disease transmission. The present study developed a source model to provide the thermo-fluid conditions of the exhaled air from the breathing and talking processes. The source model is a set of equations obtained from the measurements of the flow rate, flow direction, and area of mouth/nose opening with human subjects. It was found that the exhaled flow rate over time can be represented as a sinusoidal function for breathing and a constant for talking. The flow rates can be calculated by physiological parameters of a subject. The direction of the exhalation jet did not vary much between subjects and the area of mouth/nose opening could be regarded as a constant. Though the mouth/nose opening size varied among subjects, they were not correlated with the physiological parameters of the subjects. If combined with appropriate virus and droplet distribution information, the model can be used to describe the disease source due to breathing and talking. PRACTICAL IMPLICATIONS Accurate prediction of airborne disease transmission, and the infection prone zones, can aid in identifying and implementing the control strategies. With the recent advancements, Computational Fluid Dynamics (CFD) has become a powerful tool in predicting the disease transmission. Accurate prediction of the transmission by these CFD simulations requires information on sources and sinks of infectious viruses and models for dispersion of these viruses. The exhaled air of an infected human is one of the prime sources of disease viruses. In the present study, measurements of the flow were conducted on human subjects to develop models for the flow boundary conditions for the exhalation and inhalation during breathing and talking.

371 citations


Journal ArticleDOI
TL;DR: The strengths and limitations of the Wells–Riley and the dose‐response models for risk assessment of respiratory diseases are summarized.
Abstract: Infection risk assessment is very useful in understanding the transmission dynamics of infectious diseases and in predicting the risk of these diseases to the public. Quantitative infection risk assessment can provide quantitative analysis of disease transmission and the effectiveness of infection control measures. The Wells–Riley model has been extensively used for quantitative infection risk assessment of respiratory infectious diseases in indoor premises. Some newer studies have also proposed the use of dose-response models for such purpose. This study reviews and compares these two approaches to infection risk assessment of respiratory infectious diseases. The Wells–Riley model allows quick assessment and does not require interspecies extrapolation of infectivity. Dose-response models can consider other disease transmission routes in addition to airborne route and can calculate the infectious source strength of an outbreak in terms of the quantity of the pathogen rather than a hypothetical unit. Spatial distribution of airborne pathogens is one of the most important factors in infection risk assessment of respiratory disease. Respiratory deposition of aerosol induces heterogeneous infectivity of intake pathogens and randomness on the intake dose, which are not being well accounted for in current risk models. Some suggestions for further development of the risk assessment models are proposed. Practical Implications This review article summarizes the strengths and limitations of the Wells–Riley and the dose-response models for risk assessment of respiratory diseases. Even with many efforts by various investigators to develop and modify the risk assessment models, some limitations still persist. This review serves as a reference for further development of infection risk assessment models of respiratory diseases. The Wells–Riley model and dose-response model offer specific advantages. Risk assessors can select the approach that is suitable to their particular conditions to perform risk assessment.

289 citations


Journal ArticleDOI
TL;DR: The results indicate that thermal sensation of the elderly was, in general, 0.5 scale units lower in comparison with their younger counterparts, and the elderly showed more distal vasoconstriction during both conditions.
Abstract: UNLABELLED Results from naturally ventilated buildings show that allowing the indoor temperature to drift does not necessarily result in thermal discomfort and may allow for a reduction in energy use. However, for stationary conditions, several studies indicate that the thermal neutral temperature and optimum thermal condition differ between young adults and elderly. There is a lack of studies that describe the effect of aging on thermal comfort and productivity during a moderate temperature drift. In this study, the effect of a moderate temperature drift on physiological responses, thermal comfort, and productivity of eight young adults (age 22-25 year) and eight older subjects (age 67-73 year) was investigated. They were exposed to two different conditions: S1-a control condition; constant temperature of 21.5 degrees C; duration: 8 h; and S2-a transient condition; temperature range: 17-25 degrees C, duration: 8 h, temperature drift: first 4 h: +2 K/h, last 4 h: -2 K/h. The results indicate that thermal sensation of the elderly was, in general, 0.5 scale units lower in comparison with their younger counterparts. Furthermore, the elderly showed more distal vasoconstriction during both conditions. Nevertheless, TS of the elderly was related to air temperature only, while TS of the younger adults also was related to skin temperature. During the constant temperature session, the elderly preferred a higher temperature in comparison with the young adults. PRACTICAL IMPLICATIONS Because the stock of fossil fuels is limited, energy savings play an important role. Thermal comfort is one of the most important performance indicators to successfully apply measures to reduce the energy need in buildings. Allowing drifts in indoor temperature is one of the options to reduce the energy demand. This study contributes to the knowledge concerning the effects of a moderate temperature drift and the age of the inhabitants on their thermal comfort.

265 citations


Journal ArticleDOI
TL;DR: It is suggested that it may be possible to reduce building-related symptoms by altering exposure to certain SVOCs, such as tributylphosphate commonly found in ceiling and wall coverings and s-421 used as a synergist for pyrethroids.
Abstract: The aim of this study was to evaluate the levels of semi-volatile compounds (SVOCs) in residential detached houses in Sapporo, Japan, and whether exposure to these SVOCs was associated with the development of building-related symptoms named ‘sick house syndrome’ (SHS). The definition of SHS is fundamentally the same as that of the sick building syndrome (SBS). The presence of symptoms of SHS was evaluated using a validated self-administered questionnaire. Surveys and samplings of air and house dust in 41 dwellings were performed from October 2006 to January 2007, and 134 occupants responded to questionnaires. Samples were analyzed to quantify the concentrations of eight plasticizers, eleven phosphate triester flame retardants, two alkyl phenols used as anti-oxidants, and one organochlorine synergist called s-421, by gas chromatography–mass spectrometry and gas chromatography–flame photometry. The compounds frequently detected were di-n-butylphthalate, di(2-ethylhexyl)phthalate (DEHP), and dibutylhydroxytoluene in air, and DEHP and tris(2-butoxyethyl)phosphate (TBEP) in dust. Tributylphosphate was strongly and directly associated with mucosal symptoms of SHS; s-421 was also directly associated with mucosal symptoms of SHS. On the contrary, some chemicals such as diethylphthalate and TBEP were inversely associated with SHS. In future studies, we plan to assess these associations in a larger population. Practical Implications This study suggests that it may be possible to reduce building-related symptoms by altering exposure to certain SVOCs, such as tributylphosphate commonly found in ceiling and wall coverings and s-421 used as a synergist for pyrethroids. The association between SHS and s-421 suggested that use of pyrethroid insecticides could elicit symptoms of SHS. However, further studies are necessary to test the associations observed in the present study and to examine whether the SVOCs associated with symptoms are causative agents or simply surrogates for some other factor that is causing the symptoms.

249 citations


Journal ArticleDOI
Chun Chen1, Bin Zhao1
TL;DR: Results from detailed numerical studies reveal how the evaporation of droplets, ventilation rate, airflow pattern, initial exhaled velocity, and particle component decide the droplet dispersion indoor.
Abstract: This study employs a numerical model to investigate the dispersion characteristics of human exhaled droplets in ventilation rooms. The numerical model is validated by two different experiments prior to the application for the studied cases. Some typical questions on studying dispersion of human exhaled droplets indoors are reviewed and numerical study using the normalized evaporation time and normalized gravitational sedimentation time was performed to obtain the answers. It was found that modeling the transient process from a droplet to a droplet nucleus due to evaporation can be neglected when the normalized evaporation time is <0.051. When the normalized gravitational sedimentation time is <0.005, the influence of ventilation rate could be neglected. However, the influence of ventilation pattern and initial exhaled velocity on the exhaled droplets dispersion is dominant as the airflow decides the droplets dispersion significantly. Besides, the influence of temperature and relative humidity on the dispersion of droplets can be neglected for the droplet with initial diameter <200 microm; while droplet nuclei size plays an important role only for the droplets with initial diameter within the range of 10 microm-100 microm. Practical Implications Dispersion of human exhaled droplets indoor is a key issue when evaluating human exposure to infectious droplets. Results from detailed numerical studies in this study reveal how the evaporation of droplets, ventilation rate, airflow pattern, initial exhaled velocity, and particle component decide the droplet dispersion indoor. The detailed analysis of these main influencing factors on droplet dispersion in ventilation rooms may help to guide (1) the selection of numerical approach, e.g., if the transient process from a droplet to a droplet nucleus due to evaporation should be incorporated to study droplet dispersion, and (2) the selection of ventilation system to minimize the spread of pathogen-laden droplets in an indoor environment.

181 citations


Journal ArticleDOI
TL;DR: The results show that the predominant strategy of thermal adaptation for elders was window-opening in the summer and clothing adjustment in the winter, and the unique sensitivity of elders toward indoor thermal quality and the selection of adaptive strategies that need to be considered when a thermal comfort zone is attempted in a household of members consisting of different age groups.
Abstract: UNLABELLED This study investigated the thermal sensation of elderly people in Taiwan, older than 60 years, in indoor microclimate at home, and their requirements for establishing thermal comfort. The study was conducted using both a thermal sensation questionnaire and measurement of indoor climatic parameters underlying the thermal environment. Survey results were compared with those reported by Cheng and Hwang (2008, J. Tongji Univ., 38, 817-822) for non-elders to study the variation between different age groups in requirements of indoor thermal comfort. The results show that the predominant strategy of thermal adaptation for elders was window-opening in the summer and clothing adjustment in the winter. The temperature of thermal neutrality was 25.2 degrees C and 23.2 degrees C for the summer and the winter, respectively. Logistically regressed probit modeling on percentage of predicted dissatisfied (PPD) against mean thermal sensation vote revealed that the sensation votes corresponding to a PPD of 20% were +/- 0.75 for elders, about +/- 0.10 less than the levels projected by ISO 7730 model. The range of operative temperature for 80% thermal acceptability for elders in the summer was 23.2-27.1 degrees C, narrower than the range of 23.0-28.6 degrees C reported for non-elders. This is likely a result of a difference in the selection of adaptive strategies. PRACTICAL IMPLICATIONS Taiwan in the last decade has seen a rapid growth in the elderly population in its societal structure, and as such the quality of indoor thermal comfort increasingly concerns the elderly people. This study presents the results from field-surveying elders residing in major geographical areas of Taiwan, and discusses the requirements of these elders for indoor thermal comfort in different seasons. Through a comparison with the requirements by non-elders, this study demonstrates the unique sensitivity of elders toward indoor thermal quality and the selection of adaptive strategies that need to be considered when a thermal comfort zone is attempted in a household of members consisting of different age groups.

160 citations


Journal ArticleDOI
TL;DR: Quantitative and qualitative data are presented to characterize residential AERs in three US urban areas with different climate attributes, including apartments and condominiums in more densely populated urban areas.
Abstract: We report approximately 500 indoor–outdoor air exchange rate (AER) calculations based on measurements conducted in residences in three US metropolitan areas in 1999–2001: Elizabeth, New Jersey; Houston, Texas; and Los Angeles County, California. Overall, a median AER across these urban areas and seasons was 0.71 air changes per hour (ACH, or per hour; n = 509) while median AERs measured in California (n = 182), New Jersey (n = 163), and Texas (n = 164) were 0.87, 0.88, and 0.47 ACH, respectively. In Texas, the measured AERs were lower in the summer cooling season (median = 0.37 ACH) than in the winter heating season (median = 0.63 ACH), likely because of the reported use of room air conditioners as Houston is typically hot and humid during the summer. The measured AERs in California were higher in summer (median = 1.13 ACH) than in winter (median = 0.61 ACH). Because the summer cooling season in Los Angeles County is less humid than in New Jersey or Texas, natural ventilation through open windows and screened doors likely increased measured AER in California study homes. In New Jersey, AER were similar across heating and cooling seasons, although the median AER was relatively lower during the spring. Practical Implications Adequate ventilation or air exchange rate (AER) for an indoor environment is important for human health and comfort, and relevant to building design and energy conservation and efficiency considerations. However, residential AER data, especially measured by more accurate non-toxic tracer gas methodologies, are at present quite limited worldwide, and are insufficient to represent the variations across regions and seasons within and between homes, including apartments and condominiums in more densely populated urban areas. The present paper presents quantitative and qualitative data to characterize residential AERs in three US urban areas with different climate attributes.

151 citations


Journal ArticleDOI
TL;DR: In this paper, a set of 209 dwellings that represent 80% of U.S. housing stock is used to generate frequency distributions of residential infiltration rates using the multizone network airflow model, CONTAM (CONTAMW 2.4 User Guide and Program Documentation, NISTIR 7251.
Abstract: UNLABELLED A set of 209 dwellings that represent 80% of U.S. housing stock is used to generate frequency distributions of residential infiltration rates. The set of homes is based on an analysis of the 1997 U.S. Department of Energy's Residential Energy Consumption Survey, which documents numerous housing characteristics including type, floor area, number of rooms, type of heating system, foundation type, and year of construction. The infiltration rate distributions are developed using the multizone network airflow model, CONTAM (CONTAMW 2.4 User Guide and Program Documentation, NISTIR 7251. National Institute of Standards and Technology.). In this work, 19 cities are selected to represent U.S. climatic conditions, and CONTAM simulations are performed for each of the 209 houses in these cities to calculate building air change rates for each hour over a year. Frequency distributions are then developed and presented nationally as well as based on house type and region. PRACTICAL IMPLICATIONS These distributions will support indoor air quality, exposure, and energy analyses based on a truly representative collection of U.S. homes, which has previously not been possible. In addition, the methodology employed can be extended to other countries and other collections of buildings. For U.S.-specific analyses, these homes and their models, can be extended to include occupants, contaminant sources, and other building features to allow a wide range of studies to address other ventilation and indoor air quality issues.

124 citations


Journal ArticleDOI
TL;DR: Everyday exposure to indoor pollution was associated with a higher risk of childhood asthma, suggesting that even at low concentrations, pollutants could be implicated in asthma and reinforce the importance of establishing guideline values to improve indoor air quality by limiting sources or by optimizing ventilation.
Abstract: Health effects of indoor pollution have been investigated overall in urban areas. To compare the potential effect of home air pollutants on asthma in urban and rural houses, two case–control populations, composed of children living in the city (32 asthmatics and 31 controls) and in the countryside (24 asthmatics and 27 controls) were included. During 1 week, nitrogen dioxide, fine particles, and volatile organic compounds (formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, and xylenes) were assessed at home. Urban dwellings were found to be more polluted than rural ones, with concentrations up to two times higher. In the whole population, exposure to acetaldehyde and toluene was significantly associated with a higher risk of asthma. In the urban population, the association with toluene was significant in children studied during winter, and with toluene, xylenes, and ethylbenzene when cases were restricted to current asthmatics. In rural settings, a relationship between asthma and formaldehyde exposure was observed (OR = 10.7; 95% CI 1.69–67.61). Our findings suggest that daily continuous exposures to pollutants may be implicated in asthma, even in the case of low exposure, as those found in rural areas. Our results could also indicate a specific effect of indoor pollution in the rural environment. Practical Implications Everyday exposure to indoor pollution was associated with a higher risk of childhood asthma. These findings suggest that even at low concentrations, pollutants could be implicated in asthma and reinforce the importance of establishing guideline values to improve indoor air quality by limiting sources or by optimizing ventilation. Specific effects could occur in rural environments where pollution differs from urban area.

122 citations


Journal ArticleDOI
TL;DR: Factor analysis of indoor data indicated that the contribution of outdoor pollutant sources to indoor pollution was about 70%, making these sources the most significant for indoor heavy metal pollution, wheras other sources of indoor pollution included smoking and cooking activities.
Abstract: This study presents indoor/outdoor PM2.5 and PM10 concentrations measured during winter and summer in 15 homes in Kocaeli, which is one of the most industrialized areas in Turkey. Indoor and outdoor PM2.5 and PM10 mass concentrations and elemental composition were determined using an X-ray fluorescence spectrometer. Quantitative information was obtained on mass concentrations and other characteristics such as seasonal variation, indoor/outdoor (I/O) ratio, PM2.5/PM10 ratio, correlations and sources. Average indoor and outdoor PM2.5 concentrations were 29.8 and 23.5 microg/m(3) for the summer period, and 24.4 and 21.8 microg/m(3) for the winter period, respectively. Average indoor and outdoor PM10 concentrations were 45.5 and 59.9 microg/m(3) for the summer period, and 56.9 and 102.3 microg/m(3) for the winter period, respectively. A varimax rotated factor analysis (FA) was performed separately on indoor and outdoor datasets in an effort to identify possible heavy metal sources of PM2.5 and PM10 particle fractions. FA of outdoor data produced source categories comprising polluted soil, industry, motor vehicles, and fossil fuel combustion for both PM fractions, while source categories determined for indoor data for both PM2.5 and PM10 comprised industry, polluted soil, motor vehicles, and smoking, with an additional source category of cooking activities detected for the PM2.5 fraction. Practical Implications In buildings close to industrial areas or traffic arteries, outdoor sources may have an important effect on indoor air pollution. Therefore, indoor and outdoor investigations should be conducted simultaneously to assess the relationship between indoor and outdoor pollution. This study presents the simultaneous measurement of PM fractions (PM2.5 and PM10) and their elemental compositions to determine the sources of respirable PM and the heavy metals bound to these particles in indoor air. Factor analysis of indoor data indicated that the contribution of outdoor pollutant sources to indoor pollution was about 70%, making these sources the most significant for indoor heavy metal pollution, wheras other sources of indoor pollution included smoking and cooking activities.

113 citations


Journal ArticleDOI
TL;DR: The findings of the relatively poor performance of fine-particle removal by the existing CDC design of isolation room ventilation suggests a need for improvement, and the found of the removal of large particles by deposition, not by ventilation, suggest that floor-level exhausts are unnecessary, and that regular surface cleaning and disinfection is necessary, thus providing evidence for maintaining isolation room surface hygiene.
Abstract: Removal of airborne particles in airborne infection isolation rooms is important for infection control of airborne diseases. Previous studies showed that the downward ventilation recommended by Centers for Disease Control and Prevention (CDC) could not produce the expected ‘laminar’ flow for pushing down respiratory gaseous contaminants and removing them via floor-level exhausts. Instead, upper-level exhausts were more efficient in removing gaseous contaminants because of upward body plumes. The conventional wisdom in the current CDC-recommended design is that floor-level exhausts may efficiently remove large droplets/particles, but such a hypothesis has not been proven. We investigated the fate of respiratory particles in a full-scale six-bed isolation room with exhausts at different locations by both experimental and computational studies. Breathing thermal manikins were used to simulate patients, and both gaseous and large particles were used to simulate the expelled fine droplet nuclei and large droplets. Gaseous and fine particles were found to be removed more efficiently by ceiling-level exhausts than by floor-level exhausts. Large particles were mainly removed by deposition rather than by ventilation. Our results show that the existing isolation room ventilation design is not effective in removing both fine and large respiratory particles. An improved ventilation design is hence recommended. Practical Implications Our findings of the relatively poor performance of fine-particle removal by the existing CDC design of isolation room ventilation suggests a need for improvement, and the findings of the removal of large particles by deposition, not by ventilation, suggest that floor-level exhausts are unnecessary, and that regular surface cleaning and disinfection is necessary, thus providing evidence for maintaining isolation room surface hygiene.

Journal ArticleDOI
TL;DR: This study showed considerably high concentrations of particulate matter, particularly in kitchens using biomass fuels, as compared to living areas, and women and children face the greatest exposure due to the amount of time they spend in the kitchen.
Abstract: UNLABELLED: Particulate pollution has emerged as a serious environmental health concern in Pakistan. The use of biomass fuels in traditional stoves produces high levels of indoor air pollutants. In Pakistan, 94% of rural and 58% of urban households depend on biomass fuel. This study investigates variations in indoor/outdoor concentrations of particulate matter during various activities for three different micro-environments in Pakistan. At a rural site, the average indoor/outdoor ratios for PM(10), PM(2.5), and PM(1), in kitchens using biomass fuels were 3.80, 4.36, and 4.11, respectively. A large variation was recorded in the mass concentration of particulate matter during cooking with concentrations in the range 4000-8555 microg/m(3). In a living room at a rural site, the average indoor/outdoor ratios for PM(10), PM(2.5), and PM(1) were 1.74, 2.49, and 3.01, respectively. At the urban site, the average indoor/outdoor ratios for the same size fractions were 1.71, 2.88, and 3.47, respectively. Cooking, cleaning and smoking were identified as principal contributors to the high indoor levels of particulate matter. This study showed considerably high concentrations of particulate matter, particularly in kitchens using biomass fuels, as compared to living areas. Thus women and children face the greatest exposure due to the amount of time they spend in the kitchen. PRACTICAL IMPLICATIONS: In the developing world, particulate air pollution, both indoor and outdoor, is a substantial health hazard to the public. The very high concentrations of particulate matter in both rural and urban sites, particularly in kitchens using biomass fuels, emphasize the severity of this issue in Pakistan. Women and children are extensively at risk due to amount of time spent in kitchens. This state of affairs calls for a large-scale intervention to reduce the exposure to indoor air pollution.

Journal ArticleDOI
TL;DR: It is confirmed that the mitigating effects of ventilation on C(in) decrease with time through the analysis of data for new homes available in the literature, and through models, and that source removal is the most effective way to decrease chronic exposures to formaldehyde in existing homes.
Abstract: UNLABELLED Chronic human exposure to formaldehyde is significantly increased by indoor sources. However, information is lacking on why these exposures appear to persist in older homes with aging sources. We use data from the Relationships of Indoor, Outdoor, and Personal Air study to evaluate 179 residences, most of which were older than 5 years. We assess the dependence of indoor formaldehyde concentrations (C(in)) on building type and age, whole-house air exchange rate, indoor temperature, and seasonal changes. Indoor formaldehyde had mean and median concentrations of 17 ppb, and primarily originated from indoor sources. The factors we analyzed did not explain much of the variance in C(in), probably because of their limited influence on mechanisms that control the long-term release of formaldehyde from aging pressed-wood products bound with urea-formaldehyde (UF) resins. We confirmed that the mitigating effects of ventilation on C(in) decrease with time through the analysis of data for new homes available in the literature, and through models. We also explored source control strategies and conclude that source removal is the most effective way to decrease chronic exposures to formaldehyde in existing homes. For new homes, reducing indoor sources and using pressed-wood with lower UF content are likely the best solutions. PRACTICAL IMPLICATIONS Formaldehyde concentrations in homes due to indoor sources appear to persist throughout the lifetime of residences. Increases in ventilation rates are most effective in decreasing indoor concentrations in new homes where formaldehyde levels are high or when homes are tight. Consequently, other alternatives need to be promoted such as decreasing the amount of pressed-wood products with urea-formaldehyde (UF) resins in homes or reducing the UF content in these materials.

Journal ArticleDOI
TL;DR: PVC -as flooring material - and its association with incident asthma in a Swedish child cohort study was investigated in this paper, where the association was found to be statistically significant.
Abstract: PVC - as flooring material - and its association with incident asthma in a Swedish child cohort study

Journal ArticleDOI
TL;DR: Limonene ozonolysis was examined under conditions relevant to indoor environments in terms of temperatures, air exchange rates, and reagent concentrations to better understand the formation mechanism of secondary organic aerosol generated from indoor chemistry and shed light on potential adverse health effect associated with exposure to particles.
Abstract: Limonene ozonolysis was examined under conditions relevant to indoor environments in terms of temperatures, air exchange rates, and reagent concentrations. Secondary organic aerosols (SOA) produced and particle-bound reactive oxygen species (ROS) were studied under situations when the product of the two reagent concentrations was constant, the specific concentration combinations play an important role in determining the total SOA formed. A combination of concentration ratios of ozone/limonene between 1 and 2 produce the maximum SOA concentration. The two enantiomers, R-(+)-limonene and S-(−)-limonene, were found to have similar SOA yields. The measured ROS concentrations for limonene and ozone concentrations relevant to prevailing indoor concentrations ranged from 5.2 to 14.5 nmol/m3 equivalent of H2O2. It was found that particle samples aged for 24 h in freezer lost a discernible fraction of the ROS compared to fresh samples. The residual ROS concentrations were around 83–97% of the values obtained from the analysis of samples immediately after collection. The ROS formed from limonene ozonolysis could be separated into three categories as short-lived, high reactive, and volatile; semi-volatile and relatively stable; non-volatile and low-reactive species based on ROS measurements under various conditions. Such chemical and physical characterization of the ROS in terms of reactivity and volatility provides useful insights into nature of ROS. Practical Implications A better understanding of the formation mechanism of secondary organic aerosol generated from indoor chemistry allows us to evaluate and predict the exposure under such environments. Measurements of particle-bound ROS shed light on potential adverse health effect associated with exposure to particles.

Journal ArticleDOI
TL;DR: The average indoor/outdoor ratios of most of the measured polycyclic aromatic hydrocarbons, hopanes, and steranes were close to or slightly lower than 1, and the corresponding indoor-outdoor correlation coefficients were always positive and, for the most part, moderately strong.
Abstract: UNLABELLED Quasi-ultrafine (quasi-UF) particulate matter (PM(0.25)) and its components were measured in indoor and outdoor environments at four retirement communities in Los Angeles Basin, California, as part of the Cardiovascular Health and Air Pollution Study (CHAPS). The present paper focuses on the characterization of the sources, organic constituents and indoor and outdoor relationships of quasi-UF PM. The average indoor/outdoor ratios of most of the measured polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes were close to or slightly lower than 1, and the corresponding indoor-outdoor correlation coefficients (R) were always positive and, for the most part, moderately strong (median R was 0.60 for PAHs and 0.74 for hopanes and steranes). This may reflect the possible impact of outdoor sources on indoor PAHs, hopanes, and steranes. Conversely, indoor n-alkanes and n-alkanoic acids were likely to be influenced by indoor sources. A chemical mass balance model was applied to both indoor and outdoor speciated chemical measurements of quasi-UF PM. Among all apportioned sources of both indoor and outdoor particles, vehicular emissions was the one contributing the most to the PM(0.25) mass concentration measured at all sites (24-47% on average). PRACTICAL IMPLICATIONS Although people (particularly the elderly retirees of our study) generally spend most of their time indoors, a major portion of the PM(0.25) particles they are exposed to comes from outdoor mobile sources. This is important because, an earlier investigation, also conducted within the Cardiovascular Health and Air Pollution Study (CHAPS), showed that indoor-infiltrated particles from mobile sources are more strongly correlated with adverse health effects observed in the elderly subjects living in the studied retirement communities compared with other particles found indoors (Delfino et al., 2008).

Journal ArticleDOI
TL;DR: Improving affordability and access to better lighting options (hurricane or pressure lamps and lighting using grid or off-grid electricity) can deliver health benefits for a large fraction of the world's population, while reducing the economic and environmental burden of the current fuel-based lighting technologies.
Abstract: Over one-quarter of the worlds population relies on fuel-based light- ing. Kerosene lamps are often located in close proximity to users, potentially increasing the risk for respiratory illnesses and lung cancer. Particulate matter concentrations resulting from cook stoves have been extensively studied in the literature. However, characterization of particulate concentrations from fuel- based lighting has received minimal attention. This research demonstrates that vendors who use a single simple wick lamp in high-air-exchange market kiosks will likely be exposed to PM2.5 concentrations that are an order of magnitude greater than ambient health guidelines. Using a hurricane lamp will reduce exposure to PM2.5 and PM10 concentrations by an order of magnitude compared to using a simple wick lamp. Vendors using a single hurricane or pressure lamp may not exceed health standards or guidelines for PM2.5 and PM10, but will be exposed to elevated 0.02-0.3 lm particle concentrations. Vendors who change from fuel-based lighting to electric lighting technology for enhanced illumination will likely gain the ancillary health benefit of reduced particulate matter exposure. Vendors exposed only to ambient and fuel-based lighting particulate matter would see over an 80% reduction in inhaled PM2.5 mass if they switched from a simple wick lamp to an electric lighting technology.

Journal ArticleDOI
TL;DR: The combustion of an incense stick in the living room was associated with significant modifications of the concentrations of particles measured in the different rooms of the house, which may have significant implications in terms of assessment of indoor exposure to fine and ultrafine particles.
Abstract: The potential health effects of fine and ultrafine particles are of increasing concern. A better understanding of particle characteristics and dispersion behavior is needed. This study aims at characterizing spatial and temporal variations in fine and ultrafine particle dispersion after emission from a model source in an experimental house. Particles emitted by an incense stick burning for 15 min were characterized. Number concentration, specific surface area and mass were measured. Partial chemical analysis of particles was also realized. Near the burning incense stick, the maximum concentration was 25,500 particles/cm(3); the indoor PM(2.5) concentration reached 197 microg/m(3), and the specific surface area concentration was 180 microm(2)/cm(3). The estimated incense smoke density was 1.1 g/cm(3). Time of Flight Aerosol Mass Spectrometer measurements indicated that the organic fraction was predominant in the aerosol mass detected, and other minor components identified were K(+), NO(3)(-), and Cl(-). The combustion of an incense stick in the living room was associated with significant modifications of the concentrations of particles measured in the different rooms of the house. This demonstration of pollution by particle dispersion by a model source of moderate intensity may have significant implications in terms of assessment of indoor exposure to such particles. Practical Implications The particles emitted in a domestic environment by a source of moderate intensity such as burning incense disperse throughout the house, even in rooms with closed doors and in rooms as far away as the next floor. This dispersion has significant implications in terms of evaluating human indoor exposure to fine and ultrafine particles.

Journal ArticleDOI
TL;DR: It was found that microorganisms retained on a photocatalytic filter were inactivated around 60-80% and even 100% for S. epidermidis when the PCO reactions occurred, and lower penetration was also found from the photocatallytic filter for all airborne microorganisms.
Abstract: UNLABELLED This study assessed the application of photocatalytic oxidation (PCO) to the high efficiency particulate air (HEPA) filter for disinfection of airborne microorganisms. Experiments were conducted at two TiO2 loadings (1870 +/- 169 and 3140 +/- 67 mg/m(2)) on the HEPA filter irradiated with UV-A at the intensity of 0.85 +/- 0.18 or 4.85 +/- 0.09 mW/cm(2) under two relative humidity conditions (45 +/- 5% and 75 +/- 5%). Inactivation and penetration of four microorganisms were tested, including Aspergillus niger, Penicillium citrinum, Staphylococcus epidermidis, and Bacillus subtilis. It was found that microorganisms retained on a photocatalytic filter were inactivated around 60-80% and even 100% for S. epidermidis when the PCO reactions occurred. Lower penetration was also found from the photocatalytic filter for all airborne microorganisms. High humidity decreased photocatalysis efficacy. Increasing TiO2 loading or irradiance intensity did not substantially affect its disinfection capability. PRACTICAL IMPLICATIONS The high efficiency particulate air filter is used widely to remove particulates and microorganisms from the air stream. However, the filter may become a source of microbes if those retained microorganisms proliferate and re-entrain back into the filtered air. This study demonstrates that such a problem can be handled effectively by using photocatalytic reactions to inactivate those confined microorganisms. A 60-100% microbe reduction can be achieved for a wide variety of microorganisms to provide better indoor air quality for hospitals, offices, and domestic applications.

Journal ArticleDOI
TL;DR: The experimental study has observed that the initial emittable concentration of formaldehyde in medium density board is heavily dependent on temperature, and this factor should be considered in dealing with heating or cooling process of building materials.
Abstract: UNLABELLED The initial emittable concentration of volatile organic compounds (VOC) is a key parameter not only in evaluating the 'green' degree of building materials but also in modeling their emission characteristics. Although the impact of temperature on initial emittable concentration is important, it has not been reported in the literature. Using the multi-emission/flush regression method we developed, the impact of temperature on the initial emittable concentration of formaldehyde in medium density board has been experimentally studied. It is observed that the initial emittable concentration increases significantly with increasing temperature. When the temperature rises by 25.4°C, it increases by about 507%. However, the initial emittable concentration at room temperature is far less than the value measured by the perforator method recommended by the Chinese National Standard GB/T 17657-1999, which measures the total concentration of formaldehyde in medium density board. This means most of formaldehyde in the building material cannot emit out at room temperature. The results will be very helpful in estimating the emission characteristics of building materials at different temperatures as well as for developing green building materials. PRACTICAL IMPLICATIONS Knowledge of initial emittable concentration is important for VOC emission prediction. According to our experimental study, the initial emittable concentration is heavily dependent on temperature, and this factor should be considered in dealing with heating or cooling process of building materials. The significant difference between the initial emittable concentration and total concentration suggests that the total concentration seems not appropriate for judging the pollution level of building materials.

Journal ArticleDOI
TL;DR: The newly developed ceiling-mounted PV system offers a practical solution to the integration of PV air terminal devices (ATDs) in the vicinity of the workstation, by remotely locating the PV ATDs on the ceiling directly above the occupants and under their control.
Abstract: The benefits of thermal comfort and indoor air quality with personalized ventilation (PV) systems have been demonstrated in recent studies. One of the barriers for wide spread acceptance by architects and HVAC designers has been attributed to challenges and constraints faced in the integration of PV systems with the work station. A newly developed ceiling-mounted PV system addresses these challenges and provides a practical solution while retaining much of the apparent benefits of PV systems. Assessments of thermal environment, air movement, and air quality for ceiling-mounted PV system were performed with tropically acclimatized subjects in a Field Environmental Chamber. Thirty-two subjects performed normal office work and could choose to be exposed to four different PV airflow rates (4, 8, 12, and 16 L/s), thus offering themselves a reasonable degree of individual control. Ambient temperatures of 26 and 23.5°C and PV air temperatures of 26, 23.5, and 21°C were employed. The local and whole body thermal sensations were reduced when PV airflow rates were increased. Inhaled air temperature was perceived cooler and perceived air quality and air freshness improved when PV airflow rate was increased or temperature was reduced. Practical Implications The newly developed ceiling-mounted PV system offers a practical solution to the integration of PV air terminal devices (ATDs) in the vicinity of the workstation. By remotely locating the PV ATDs on the ceiling directly above the occupants and under their control, the conditioned outdoor air is now provided to the occupants through the downward momentum of the air. A secondary air-conditioning and air distribution system offers additional cooling in the room and maintains a higher ambient temperature, thus offering significant benefits in conserving energy. The results of this study provide designers and consultants with needed knowledge for design of PV systems.

Journal ArticleDOI
Nathalie Bonvallot1, Corinne Mandin, Fabien Mercier1, B. Le Bot1, Philippe Glorennec1 
TL;DR: Most of the top-ranked compounds have reprotoxic and neurotoxic properties, and particular attention should, therefore, be paid to them in future studies.
Abstract: UNLABELLED: People spend most of their time indoors. Dust settled in the home may be contaminated by semi-volatile organic compounds (SVOCs). Exposure to these compounds is of great concern, in particular for infants. Their number is large so arose the question of which ones should be selected for dust ingestion exposure assessment. This work proposes a health ranking of SVOCs ingested through settled dust. This ranking is based on the toxicity and contamination of SVOCs in dust. Data on compounds and contamination was retrieved from a bibliographic review. Where possible, toxicity data was retrieved from databases, otherwise it was calculated from raw data. One hundred and fifty-six SVOCs were selected, 66 of which were prioritized. Forty-two could not be prioritized because contamination data was below the limit of detection, and 48 could not be prioritized because there was no contamination or toxicity data. The top-ranked compounds were phthalates, pesticides, short-chain chlorinated paraffins, PBDEs, PFCs, organotins, PCBs, and PAHs. As most of these have reprotoxic and neurotoxic properties, an integrated multi-pollutants approach to exposure is required and simultaneous measurement methods should be developed. PRACTICAL IMPLICATIONS: The large number of compounds identified in settled dust in recent years should be considered for the assessment of exposure to dust ingestion. This work provides a health ranking of SVOCs ingested through settled dust. Most of the top-ranked compounds have reprotoxic and neurotoxic properties, and particular attention should, therefore, be paid to them in future studies.

Journal ArticleDOI
TL;DR: There is no reason for one-time air sampling of mold colony-forming unit (CFU) in indoor air of homes to identify risk factors for asthma/allergy in children living in Scandinavian countries.
Abstract: Culturable mold in indoor air and its association with moisture-related problems and asthma and allergy among Swedish children

Journal ArticleDOI
TL;DR: These field studies show that indoor surfaces only slowly lose their ability to react with ozone over several year time frames, and that this is probably because of a combination of large reservoirs of reactive coatings and periodic additions of reactive Coatings in the form of cooking, cleaning, and skin-oil residues.
Abstract: UNLABELLED Field experiments were conducted in five homes during three seasons (summer 2005, summer 2006 and winter 2007) to quantify ozone-initiated secondary aldehyde yields, surface reaction probabilities, and trends any temporal over a 1.5-year interval. Surfaces examined include living room carpets, bedroom carpets, kitchen floors, kitchen counters, and living room walls. Reaction probabilities for all surfaces for all seasons ranged from 9.4 x 10(-8) to 1.0 x 10(-4). There were no significant temporal trends in reaction probabilities for any surfaces from summer 2005 to summer 2006, nor over the entire 1.5-year period, indicating that it may take significantly longer than this period for surfaces to exhibit any 'ozone aging' or lowering of ozone-surface reactivity. However, all surfaces in three houses exhibited a significant decrease in reaction probabilities from summer 2006 to winter 2007. The total yield of aldehydes for the summer of 2005 were nearly identical to that for summer of 2006, but were significantly higher than for winter 2007. We also observed that older carpets were consistently less reactive than in newer carpets, but that countertops remained consistently reactive, probably because of occupant activities such as cooking and cleaning. PRACTICAL IMPLICATIONS Ozone reactions taking place at indoor surfaces significantly influence personal exposure to ozone and volatile reaction products. These field studies show that indoor surfaces only slowly lose their ability to react with ozone over several year time frames, and that this is probably because of a combination of large reservoirs of reactive coatings and periodic additions of reactive coatings in the form of cooking, cleaning, and skin-oil residues. When considering exposure to ozone and its reaction products and in the absence of dramatic changes in occupancy, activities or furnishings, indoor surface reactivity is expected to change very slowly.

Journal ArticleDOI
TL;DR: The study will give an indication of the to-be-expected time frame for renovation-derived indoor pollution decreases when the exposure to it will reach a reference level under real-life situations.
Abstract: Volatile organic compounds (VOC) play an important role indoors since they have been linked to health symptoms and disorders. Particularly, after renovation activities, high indoor VOC concentrations have been observed. The study will give an indication, for the first time under real conditions, of the to-be-expected time frame for renovation-derived indoor pollution decreases when the exposure to it will reach a reference level. The decrease in the concentrations of investigated 26 VOC after renovations was assessed under real-life situations. Both the daily VOC concentration was measured by active sampling for 30 days in selected homes which had undergone various renovations and, as part of an epidemiologic study, the same VOC were collected monthly using passive samplers in 243 homes. An exponential function was used to interpret the concentration decay. The average time range which has to elapse following renovation activities before a guideline value or reference load is reached showed a time range between 2 and 8 weeks. This waiting time had at least be applicable to public buildings and institutions (especially relevant in case of nurseries, playschools etc.) with increasingly being implemented in private homes as well. Practical Implications After renovation an optimal waiting period had to be up to 60 days before the rooms will be used again. Fourteen days are possible, but increased ventilation is recommended. These had to be applicable at least for public buildings used by risk groups like young children. Renovations had to be carried out in summer season to ensure optimal ventilation to reduce the waiting time.

Journal ArticleDOI
TL;DR: Initial results show that the film's VOC emission profile measured in a conventional test chamber compares well to predictions based on independently determined material/chemical properties and a fundamental emissions model, and has the potential to build consensus and confidence in emissions testing.
Abstract: Because of concerns about indoor air quality, there is growing awareness of the need to reduce the rate at which indoor materials and products emit volatile organic compounds (VOCs). To meet consumer demand for low emitting products, manufacturers are increasingly submitting materials to independent laboratories for emissions testing. However, the same product tested by different laboratories can result in very different emissions profiles because of a general lack of test validation procedures. There is a need for a reference material that can be used as a known emissions source and that will have the same emission rate when tested by different laboratories under the same conditions. A reference material was created by loading toluene into a polymethyl pentene film. A fundamental emissions model was used to predict the toluene emissions profile. Measured VOC emissions profiles using small-chamber emissions tests compared reasonably well to the emissions profile predicted using the emissions model, demonstrating the feasibility of the proposed approach to create a diffusion-controlled reference material. Practical Implications To calibrate emissions test chambers and improve the reproducibility of VOC emission measurements among different laboratories, a reference material has been created using a polymer film loaded with a representative VOC. Initial results show that the film’s VOC emission profile measured in a conventional test chamber compares well to predictions based on independently determined material/chemical properties and a fundamental emissions model. The use of such reference materials has the potential to build consensus and confidence in emissions testing as well as ‘level the playing field’ for product testing laboratories and manufacturers.

Journal ArticleDOI
TL;DR: This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing for optimum IAQ and thermal comfort in naturally ventilated buildings.
Abstract: The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings.

Journal ArticleDOI
TL;DR: The results indicate that while population density and traffic-related variables are the main determinants of outdoor NO2 levels, the use of gas appliances have the greatest impact on indoor levels.
Abstract: UNLABELLED Nitrogen dioxide (NO2) is produced from the exhausts of vehicles and gas appliances and is known to pose certain health risks. In this study, we characterize the exposure to this substance during the first year of life, which is an important period of development. To this end, we used passive samplers to measure indoor and outdoor NO2 levels for 2 weeks in the homes of 352 children. To compensate for the fact that NO2 levels were measured only once in each home, a correction factor was calculated to assign each child an outdoor NO2 exposure value for the first year of life. The outdoor NO2 concentrations were 26.1 microg/m(3) while those measured indoors averaged 18.0 microg/m(3). A multivariate linear regression analysis showed that the main determinants of outdoor NO2 levels were the degree of urbanization and the frequency of vehicle traffic at the location of the residence while for indoor NO2 levels the principal determinants were the type of cooking range and water heater present in the home, the season of the year, and both the country of origin and educational level of the mother. PRACTICAL IMPLICATIONS Exposure to NO2 has been related to respiratory and other health problems among children. Precise identification of the main sources of both indoor and outdoor NO2 should shed light on appropriate intervention periods and methods. Our results indicate that while population density and traffic-related variables are the main determinants of outdoor NO2 levels, the use of gas appliances have the greatest impact on indoor levels. Strategies should thus be developed to reduce such exposure, especially with regard to reducing emissions from vehicle traffic.

Journal ArticleDOI
TL;DR: This review finds insufficient evidence that DC can alleviate occupant's symptoms, and existing evidence is insufficient to draw solid conclusions regarding positive impact of duct cleaning on IAQ, health benefits, cost savings and HVAC performance.
Abstract: Ventilation duct cleaning (DC) is widely advocated to provide good indoor air quality (IAQ), health benefits, cost savings, and enhance ventilation system performance. The aim of the present review is to evaluate the scientific evidence as shown in the literature. There is evidence that under normal operating conditions, ventilation ducts can be contaminated with dusts and serve as reservoirs for microbials to proliferate. While controlled experiments noted that contaminants resuspension can elevate exposure levels indoors, no field studies have correlated poor IAQ with duct contamination. Despite high efficiencies of contaminant removal within the ducts during cleaning, reductions for different indoor air pollutants vary widely, where, post-cleaning air pollutants concentrations can be higher than pre-cleaning levels. Further, there are health concerns in the use of biocides, sealants and encapsulants. There is inadequate evidence to show that DC can improve airflow in ducts and reduce energy consumption. Although epidemiological studies indicate suggestive evidence that improperly maintained ducts are associated with higher risks of symptoms among building occupants, this review finds insufficient evidence that DC can alleviate occupant’s symptoms. In summary, the need for duct cleanliness has to be properly balanced by the probable generation of indoor pollution resulting from DC and subsequent potential health risks. Practical Implications Existing evidence is insufficient to draw solid conclusions regarding positive impact of duct cleaning on IAQ, health benefits, cost savings and HVAC performance. Maintaining duct cleanliness has to be properly balanced by the probable generation of indoor pollution and potential health risks.

Journal ArticleDOI
TL;DR: This study showed that even if non-smoking and smoking areas were spatially separated into two rooms, geometric mean PM(2.5) levels inNon-smoking rooms were considerably higher than in completely smoke-free hospitality venues, and spatial separation of rooms where smoking is allowed does not prevent exposure to environmental tobacco smoke in nearby non- smoking areas.
Abstract: We performed 124 measurements of particulate matter (PM(2.5)) in 95 hospitality venues such as restaurants, bars, cafes, and a disco, which had differing smoking regulations. We evaluated the impact of spatial separation between smoking and non-smoking areas on mean PM(2.5) concentration, taking relevant characteristics of the venue, such as the type of ventilation or the presence of additional PM(2.5) sources, into account. We differentiated five smoking environments: (i) completely smoke-free location, (ii) non-smoking room spatially separated from a smoking room, (iii) non-smoking area with a smoking area located in the same room, (iv) smoking area with a non-smoking area located in the same room, and (v) smoking location which could be either a room where smoking was allowed that was spatially separated from non-smoking room or a hospitality venue without smoking restriction. In these five groups, the geometric mean PM(2.5) levels were (i) 20.4, (ii) 43.9, (iii) 71.9, (iv) 110.4, and (v) 110.3 microg/m(3), respectively. This study showed that even if non-smoking and smoking areas were spatially separated into two rooms, geometric mean PM(2.5) levels in non-smoking rooms were considerably higher than in completely smoke-free hospitality venues. PRACTICAL IMPLICATIONS: PM(2.5) levels are considerably increased in the non-smoking area if smoking is allowed anywhere in the same location. Even locating the smoking area in another room resulted in a more than doubling of the PM(2.5) levels in the non-smoking room compared with venues where smoking was not allowed at all. In practice, spatial separation of rooms where smoking is allowed does not prevent exposure to environmental tobacco smoke in nearby non-smoking areas.