scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Health Geographics in 2017"


Journal ArticleDOI
TL;DR: Comparing discrepancies in results for the geographical accessibility of health services computed using six distance types (Euclidean and Manhattan distances; shortest network time on foot, by bicycle, by public transit, and by car), four aggregation methods, and fourteen accessibility measures shows that the evaluation of potential geographic access may vary a great deal depending on the accessibility measure and, to a lesser degree, the type of distance and aggregation method.
Abstract: The potential spatial access to urban health services is an important issue in health geography, spatial epidemiology and public health. Computing geographical accessibility measures for residential areas (e.g. census tracts) depends on a type of distance, a method of aggregation, and a measure of accessibility. The aim of this paper is to compare discrepancies in results for the geographical accessibility of health services computed using six distance types (Euclidean and Manhattan distances; shortest network time on foot, by bicycle, by public transit, and by car), four aggregation methods, and fourteen accessibility measures. To explore variations in results according to the six types of distance and the aggregation methods, correlation analyses are performed. To measure how the assessment of potential spatial access varies according to three parameters (type of distance, aggregation method, and accessibility measure), sensitivity analysis (SA) and uncertainty analysis (UA) are conducted. First, independently of the type of distance used except for shortest network time by public transit, the results are globally similar (correlation >0.90). However, important local variations in correlation between Cartesian and the four shortest network time distances are observed, notably in suburban areas where Cartesian distances are less precise. Second, the choice of the aggregation method is also important: compared with the most accurate aggregation method, accessibility measures computed from census tract centroids, though not inaccurate, yield important measurement errors for 10% of census tracts. Third, the SA results show that the evaluation of potential geographic access may vary a great deal depending on the accessibility measure and, to a lesser degree, the type of distance and aggregation method. Fourth, the UA results clearly indicate areas of strong uncertainty in suburban areas, whereas central neighbourhoods show lower levels of uncertainty. In order to accurately assess potential geographic access to health services in urban areas, it is particularly important to choose a precise type of distance and aggregation method. Then, depending on the research objectives, the choices of the type of network distance (according to the mode of transportation) and of a number of accessibility measures should be carefully considered and adequately justified.

96 citations


Journal ArticleDOI
TL;DR: The impact of Pokémon Go on physical activity can provide insights to public health workers in using novel strategies in health promotion and players who used to be sedentary benefited the most from Pokémon Go.
Abstract: The prevalence of overweight is increasing and the effectiveness of various weight management and exercise programs varied. An augmented reality smartphone game, Pokemon Go, appears to increase activity levels of players. This study assessed the players and ex-players’ frequencies and durations of staying outdoors, and walking/jogging before and during the time they played Pokemon Go, evaluated the physical activity levels of players, ex-players and non-players, and investigated the potential factors which determined their play statuses. Students in a university answered an online-questionnaire survey. The IPAQ-short form was incorporated to measure vigorous-intensity activities, moderate-intensity activities and walking. Chi square tests were used to compare frequencies and durations of staying outdoors and walking/jogging, health discomforts and physical activity levels between players, ex-players and non-players. Wilcoxon signed ranks tests were performed to assess the changes prior to and during the time when the players and ex-players played Pokemon Go. Logistic regression analyses were performed to assess factors contributing to playing, quitting or not playing Pokemon Go. 644 university students answered the questionnaire. Compared with the ex-players, the players were significantly more frequent to stay outdoors when playing Pokemon Go (P < 0.001), walk/jog to a location to catch Pokemon, to Pokestops or Gyms (P < 0.005), as well as walking/jogging to hatch eggs (P < 0.001). Players who never or rarely walked/jogged before spent a mean of 108.19 ± 158.21 min/week to walk/jog in order to play the game which is equivalent to burning 357 kcal/week for a 60-kg person walking a moderate pace. Compared with the non-players, players were more likely to be aged 18–25 years [OR (95% CI) 3.28 (1.28–8.40), P = 0.013], never [OR (95% CI) 10.51 (1.12–98.57), P = 0.039] or rarely [OR (95% CI) 4.00 (1.95–8.23), P < 0.001] stayed outdoors and rarely walked/jogged prior to playing the game [OR (95% CI) 3.88 (1.86–8.05), P < 0.001]. However, there was no significant difference in physical activity levels between the three groups (P = 0.573). Players who used to be sedentary benefited the most from Pokemon Go. The game can be used as a starting point for sedentary people to begin an active lifestyle. The impact of Pokemon Go on physical activity can provide insights to public health workers in using novel strategies in health promotion.

86 citations


Journal ArticleDOI
TL;DR: From smart urban planning and emergency training to Pokémon Go, this article offers a snapshot of some of the most remarkable VRGIS and ARGIS solutions for tackling public and environmental health problems, and bringing about safer and healthier living options to individuals and communities.
Abstract: The latest generation of virtual and mixed reality hardware has rekindled interest in virtual reality GIS (VRGIS) and augmented reality GIS (ARGIS) applications in health, and opened up new and exciting opportunities and possibilities for using these technologies in the personal and public health arenas. From smart urban planning and emergency training to Pokemon Go, this article offers a snapshot of some of the most remarkable VRGIS and ARGIS solutions for tackling public and environmental health problems, and bringing about safer and healthier living options to individuals and communities. The article also covers the main technical foundations and issues underpinning these solutions.

86 citations


Journal ArticleDOI
TL;DR: Seasonal variation in access to maternal care should not be imagined through a dichotomous and static lens of wet and dry seasons, as access continually fluctuates in both.
Abstract: Geographic proximity to health facilities is a known determinant of access to maternal care. Methods of quantifying geographical access to care have largely ignored the impact of precipitation and flooding. Further, travel has largely been imagined as unimodal where one transport mode is used for entire journeys to seek care. This study proposes a new approach for modeling potential spatio-temporal access by evaluating the impact of precipitation and floods on access to maternal health services using multiple transport modes, in southern Mozambique. A facility assessment was used to classify 56 health centres. GPS coordinates of the health facilities were acquired from the Ministry of Health while roads were digitized and classified from high-resolution satellite images. Data on the geographic distribution of populations of women of reproductive age, pregnancies and births within the preceding 12 months, and transport options available to pregnant women were collected from a household census. Daily precipitation and flood data were used to model the impact of severe weather on access for a 17-month timeline. Travel times to the nearest health facilities were calculated using the closest facility tool in ArcGIS software. Forty-six and 87 percent of pregnant women lived within a 1-h of the nearest primary care centre using walking or public transport modes respectively. The populations within these catchments dropped by 9 and 5% respectively at the peak of the wet season. For journeys that would have commenced with walking to primary facilities, 64% of women lived within 2 h of life-saving care, while for those that began journeys with public transport, the same 2-hour catchment would have contained 95% of the women population. The population of women within two hours of life-saving care dropped by 9% for secondary facilities and 18% for tertiary facilities during the wet season. Seasonal variation in access to maternal care should not be imagined through a dichotomous and static lens of wet and dry seasons, as access continually fluctuates in both. This new approach for modelling spatio-temporal access allows for the GIS output to be utilized not only for health services planning, but also to aid near real time community-level delivery of maternal health services.

76 citations


Journal ArticleDOI
TL;DR: Both the computer simulation and empirical analysis support the proposed approach, namely Conditional geographically weighted regression (CGWR), which significantly reduces the bias and variance of data fitting.
Abstract: Geographically weighted regression (GWR) is a modelling technique designed to deal with spatial non-stationarity, e.g., the mean values vary by locations. It has been widely used as a visualization tool to explore the patterns of spatial data. However, the GWR tends to produce unsmooth surfaces when the mean parameters have considerable variations, partly due to that all parameter estimates are derived from a fixed- range (bandwidth) of observations. In order to deal with the varying bandwidth problem, this paper proposes an alternative approach, namely Conditional geographically weighted regression (CGWR). The estimation of CGWR is based on an iterative procedure, analogy to the numerical optimization problem. Computer simulation, under realistic settings, is used to compare the performance between the traditional GWR, CGWR, and a local linear modification of GWR. Furthermore, this study also applies the CGWR to two empirical datasets for evaluating the model performance. The first dataset consists of disability status of Taiwan’s elderly, along with some social-economic variables and the other is Ohio’s crime dataset. Under the positively correlated scenario, we found that the CGWR produces a better fit for the response surface. Both the computer simulation and empirical analysis support the proposed approach since it significantly reduces the bias and variance of data fitting. In addition, the response surface from the CGWR reviews local spatial characteristics according to the corresponded variables. As an explanatory tool for spatial data, producing accurate surface is essential in order to provide a first look at the data. Any distorted outcomes would likely mislead the following analysis. Since the CGWR can generate more accurate surface, it is more appropriate to use it exploring data that contain suspicious variables with varying characteristics.

63 citations


Journal ArticleDOI
TL;DR: The results provide some evidence that a smaller number of neighbours used in defining the spatial weights matrix yields a better model fit, and may provide a more accurate representation of the underlying spatial random field.
Abstract: When analysing spatial data, it is important to account for spatial autocorrelation. In Bayesian statistics, spatial autocorrelation is commonly modelled by the intrinsic conditional autoregressive prior distribution. At the heart of this model is a spatial weights matrix which controls the behaviour and degree of spatial smoothing. The purpose of this study is to review the main specifications of the spatial weights matrix found in the literature, and together with some new and less common specifications, compare the effect that they have on smoothing and model performance. The popular BYM model is described, and a simple solution for addressing the identifiability issue among the spatial random effects is provided. Seventeen different definitions of the spatial weights matrix are defined, which are classified into four classes: adjacency-based weights, and weights based on geographic distance, distance between covariate values, and a hybrid of geographic and covariate distances. These last two definitions embody the main novelty of this research. Three synthetic data sets are generated, each representing a different underlying spatial structure. These data sets together with a real spatial data set from the literature are analysed using the models. The models are evaluated using the deviance information criterion and Moran’s I statistic. The deviance information criterion indicated that the model which uses binary, first-order adjacency weights to perform spatial smoothing is generally an optimal choice for achieving a good model fit. Distance-based weights also generally perform quite well and offer similar parameter interpretations. The less commonly explored options for performing spatial smoothing generally provided a worse model fit than models with more traditional approaches to smoothing, but usually outperformed the benchmark model which did not conduct spatial smoothing. The specification of the spatial weights matrix can have a colossal impact on model fit and parameter estimation. The results provide some evidence that a smaller number of neighbours used in defining the spatial weights matrix yields a better model fit, and may provide a more accurate representation of the underlying spatial random field. The commonly used binary, first-order adjacency weights still appear to be a good choice for implementing spatial smoothing.

62 citations


Journal ArticleDOI
TL;DR: The results indicate that gentrification was positively associated with perceived collective efficacy, which implies that Gentrification could have beneficial health effects for individuals living in gentrifying neighborhoods.
Abstract: Collective efficacy has been associated with many health benefits at the neighborhood level. Therefore, understanding why some communities have greater collective efficacy than others is important from a public health perspective. This study examined the relationship between gentrification and collective efficacy, in Montreal Canada. A gentrification index was created using tract level median household income, proportion of the population with a bachelor’s degree, average rent, proportion of the population with low income, and proportion of the population aged 30–44. Multilevel linear regression analyses were conducted to measure the association between gentrification and individual level collective efficacy. Gentrification was positively associated with collective efficacy. Gentrifiers (individuals moving into gentrifying neighborhoods) had higher collective efficacy than individuals that lived in a neighborhood that did not gentrify. Perceptions of collective efficacy of the original residents of gentrifying neighborhoods were not significantly different from the perceptions of neighborhood collective efficacy of gentrifiers. Our results indicate that gentrification was positively associated with perceived collective efficacy. This implies that gentrification could have beneficial health effects for individuals living in gentrifying neighborhoods.

54 citations


Journal ArticleDOI
TL;DR: The study investigates how different types of street network buffering methods compared in measuring a set of commonly used built environment measures and tested their performance on associations with physical activity outcomes and indicates significant variation among BEM values.
Abstract: Advancements in geographic information systems over the past two decades have increased the specificity by which an individual’s neighborhood environment may be spatially defined for physical activity and health research. This study investigated how different types of street network buffering methods compared in measuring a set of commonly used built environment measures (BEMs) and tested their performance on associations with physical activity outcomes. An internationally-developed set of objective BEMs using three different spatial buffering techniques were used to evaluate the relative differences in resulting explanatory power on self-reported physical activity outcomes. BEMs were developed in five countries using ‘sausage,’ ‘detailed-trimmed,’ and ‘detailed,’ network buffers at a distance of 1 km around participant household addresses (n = 5883). BEM values were significantly different (p < 0.05) for 96% of sausage versus detailed-trimmed buffer comparisons and 89% of sausage versus detailed network buffer comparisons. Results showed that BEM coefficients in physical activity models did not differ significantly across buffering methods, and in most cases BEM associations with physical activity outcomes had the same level of statistical significance across buffer types. However, BEM coefficients differed in significance for 9% of the sausage versus detailed models, which may warrant further investigation. Results of this study inform the selection of spatial buffering methods to estimate physical activity outcomes using an internationally consistent set of BEMs. Using three different network-based buffering methods, the findings indicate significant variation among BEM values, however associations with physical activity outcomes were similar across each buffering technique. The study advances knowledge by presenting consistently assessed relationships between three different network buffer types and utilitarian travel, sedentary behavior, and leisure-oriented physical activity outcomes.

54 citations


Journal ArticleDOI
TL;DR: Areas with higher neighborhood socioeconomic status had lower walkability in Madrid, and this disadvantage in walkability was not present in recently built or gentrified areas.
Abstract: Previous studies found a complex relationship between area-level socioeconomic status (SES) and walkability. These studies did not include neighborhood dynamics. Our aim was to study the association between area-level SES and walkability in the city of Madrid (Spain) evaluating the potential effect modification of neighborhood dynamics. All census sections of the city of Madrid (n = 2415) were included. Area-level SES was measured using a composite index of 7 indicators in 4 domains (education, wealth, occupation and living conditions). Two neighborhood dynamics factors were computed: gentrification, proxied by change in education levels in the previous 10 years, and neighborhood age, proxied by median year of construction of housing units in the area. Walkability was measured using a composite index of 4 indicators (Residential Density, Population Density, Retail Destinations and Street Connectivity). We modeled the association using linear mixed models with random intercepts. Area-level SES and walkability were inversely and significantly associated. Areas with lower SES showed the highest walkability. This pattern did not hold for areas with an increase in education level, where the association was flat (no decrease in walkability with higher SES). Moreover, the association was attenuated in newly built areas: the association was stronger in areas built before 1975, weaker in areas built between 1975 and 1990 and flat in areas built from 1990 on. Areas with higher neighborhood socioeconomic status had lower walkability in Madrid. This disadvantage in walkability was not present in recently built or gentrified areas.

50 citations


Journal ArticleDOI
TL;DR: This study has demonstrated that many food purchases occur outside what is traditionally considered the residential neighbourhood food environment, and further work is needed to develop more appropriate food environment exposure measures.
Abstract: Studies exploring associations between food environments and food purchasing behaviours have been limited by the absence of data on where food purchases occur. Determining where food purchases occur relative to home and how these locations differ by individual, neighbourhood and trip characteristics is an important step to better understanding the association between food environments and food behaviours. Conducted in Melbourne, Australia, this study recruited participants within sixteen neighbourhoods that were selected based on their socioeconomic characteristics and proximity to supermarkets. The survey material contained a short questionnaire on individual and household characteristics and a food purchasing diary. Participants were asked to record details related to all food purchases made over a 2-week period including food store address. Fifty-six participants recorded a total of 952 food purchases of which 893 were considered valid for analysis. Households and food purchase locations were geocoded and the network distance between these calculated. Linear mixed models were used to determine associations between individual, neighbourhood, and trip characteristics and distance to each food purchase location from home. Additional analysis was conducted limiting the outcome to: (a) purchase made when home was the prior origin (n. 484); and (b) purchases made within supermarkets (n. 317). Food purchases occurred a median distance of 3.6 km (IQR 1.8, 7.2) from participants’ homes. This distance was similar when home was reported as the origin (median 3.4 km; IQR 1.6, 6.4) whilst it was shorter for purchases made within supermarkets (median 2.8 km; IQR 1.6, 5.6). For all purchases, the reported food purchase location was further from home amongst the youngest age group (compared to the oldest age group), when workplace was the origin of the food purchase trip (compared to home), and on weekends (compared to weekdays). Differences were also observed by neighbourhood characteristics. This study has demonstrated that many food purchases occur outside what is traditionally considered the residential neighbourhood food environment. To better understand the role of food environments on food purchasing behaviours, further work is needed to develop more appropriate food environment exposure measures.

46 citations


Journal ArticleDOI
TL;DR: The R GridSample algorithm for selecting primary sampling units (PSU) for complex household surveys with gridded population data is introduced, and a promising alternative to typical census-based sampling when census data are moderately outdated or inaccurate is described.
Abstract: Household survey data are collected by governments, international organizations, and companies to prioritize policies and allocate billions of dollars. Surveys are typically selected from recent census data; however, census data are often outdated or inaccurate. This paper describes how gridded population data might instead be used as a sample frame, and introduces the R GridSample algorithm for selecting primary sampling units (PSU) for complex household surveys with gridded population data. With a gridded population dataset and geographic boundary of the study area, GridSample allows a two-step process to sample “seed” cells with probability proportionate to estimated population size, then “grows” PSUs until a minimum population is achieved in each PSU. The algorithm permits stratification and oversampling of urban or rural areas. The approximately uniform size and shape of grid cells allows for spatial oversampling, not possible in typical surveys, possibly improving small area estimates with survey results. We replicated the 2010 Rwanda Demographic and Health Survey (DHS) in GridSample by sampling the WorldPop 2010 UN-adjusted 100 m × 100 m gridded population dataset, stratifying by Rwanda’s 30 districts, and oversampling in urban areas. The 2010 Rwanda DHS had 79 urban PSUs, 413 rural PSUs, with an average PSU population of 610 people. An equivalent sample in GridSample had 75 urban PSUs, 405 rural PSUs, and a median PSU population of 612 people. The number of PSUs differed because DHS added urban PSUs from specific districts while GridSample reallocated rural-to-urban PSUs across all districts. Gridded population sampling is a promising alternative to typical census-based sampling when census data are moderately outdated or inaccurate. Four approaches to implementation have been tried: (1) using gridded PSU boundaries produced by GridSample, (2) manually segmenting gridded PSU using satellite imagery, (3) non-probability sampling (e.g. random-walk, “spin-the-pen”), and random sampling of households. Gridded population sampling is in its infancy, and further research is needed to assess the accuracy and feasibility of gridded population sampling. The GridSample R algorithm can be used to forward this research agenda.

Journal ArticleDOI
TL;DR: The strength of suicide urban–rural associations varies with respect to the applied indicator of urbanicity, and goodness-of-fit statistics suggested that the population potential score performs best, and that population density is the second best indicator ofurbanicity.
Abstract: Urban–rural disparities in suicide mortality have received considerable attention. Varying conceptualizations of urbanity may contribute to the conflicting findings. This ecological study on Germany assessed how and to what extent urban–rural suicide associations are affected by 14 different urban–rural indicators. Indicators were based on continuous or k-means classified population data, land-use data, planning typologies, or represented population-based accessibility indicators. Agreements between indicators were tested with correlation analyses. Spatial Bayesian Poisson regressions were estimated to examine urban–rural suicide associations while adjusting for risk and protective factors. Urban–rural differences in suicide rates per 100,000 persons were found irrespective of the indicator. Strong and significant correlation was observed between different urban–rural indicators. Although the effect sign consistently referred to a reduced risk in urban areas, statistical significance was not universally confirmed by all regressions. Goodness-of-fit statistics suggested that the population potential score performs best, and that population density is the second best indicator of urbanicity. Numerical indicators are favored over classified ones. Regional planning typologies are not supported. The strength of suicide urban–rural associations varies with respect to the applied indicator of urbanicity. Future studies that put urban–rural inequalities central are recommended to apply either unclassified population potentials or population density indicators, but sensitivity analyses are advised.

Journal ArticleDOI
TL;DR: This study provides an example of implementation of relative risk estimation using Bayesian models for disease mapping at small spatial scale with covariates, and relates satellite data to dengue disease, using an areal data approach, which is not commonly found in the literature.
Abstract: Dengue is a high incidence arboviral disease in tropical countries around the world. Colombia is an endemic country due to the favourable environmental conditions for vector survival and spread. Dengue surveillance in Colombia is based in passive notification of cases, supporting monitoring, prediction, risk factor identification and intervention measures. Even though the surveillance network works adequately, disease mapping techniques currently developed and employed for many health problems are not widely applied. We select the Colombian city of Bucaramanga to apply Bayesian areal disease mapping models, testing the challenges and difficulties of the approach. We estimated the relative risk of dengue disease by census section (a geographical unit composed approximately by 1–20 city blocks) for the period January 2008 to December 2015. We included the covariates normalized difference vegetation index (NDVI) and land surface temperature (LST), obtained by satellite images. We fitted Bayesian areal models at the complete period and annual aggregation time scales for 2008–2015, with fixed and space-varying coefficients for the covariates, using Markov Chain Monte Carlo simulations. In addition, we used Cohen’s Kappa agreement measures to compare the risk from year to year, and from every year to the complete period aggregation. We found the NDVI providing more information than LST for estimating relative risk of dengue, although their effects were small. NDVI was directly associated to high relative risk of dengue. Risk maps of dengue were produced from the estimates obtained by the modeling process. The year to year risk agreement by census section was sligth to fair. The study provides an example of implementation of relative risk estimation using Bayesian models for disease mapping at small spatial scale with covariates. We relate satellite data to dengue disease, using an areal data approach, which is not commonly found in the literature. The main difficulty of the study was to find quality data for generating expected values as input for the models. We remark the importance of creating population registry at small spatial scale, which is not only relevant for the risk estimation of dengue but also important to the surveillance of all notifiable diseases.

Journal ArticleDOI
TL;DR: This paper demonstrates the feasibility and challenges of creating comparable GIS-derived natural environment exposure indicators across diverse European cities and shows that Mechanism-specific indicators showed within- and between-city variability that supports their utility for ecological studies.
Abstract: The World Health Organization recognises the importance of natural environments for human health. Evidence for natural environment-health associations comes largely from single countries or regions, with varied approaches to measuring natural environment exposure. We present a standardised approach to measuring neighbourhood natural environment exposure in cities in different regions of Europe. The Positive Health Effects of the Natural Outdoor environment in TYPical populations of different regions in Europe (PHENOTYPE) study aimed to explore the mechanisms linking natural environment exposure and health in four European cities (Barcelona, Spain; Doetinchem, the Netherlands; Kaunas, Lithuania; and Stoke-on-Trent, UK). Common GIS protocols were used to develop a hierarchy of natural environment measures, from simple measures (e.g., NDVI, Urban Atlas) using Europe-wide data sources, to detailed measures derived from local data that were specific to mechanisms thought to underpin natural environment-health associations (physical activity, social interaction, stress reduction/restoration). Indicators were created around residential addresses for a range of straight line and network buffers (100 m–1 km). For simple indicators derived from Europe-wide data, we observed differences between cities, which varied with different indicators (e.g., Kaunas and Doetinchem had equal highest mean NDVI within 100 m buffer, but mean distance to nearest natural environment in Kaunas was more twice that in Doetinchem). Mean distance to nearest natural environment for all cities suggested that most participants lived close to some kind of natural environments (64 ± 58–363 ± 281 m; mean 180 ± 204 m). The detailed classification highlighted marked between-city differences in terms of prominent types of natural environment. Indicators specific to mechanisms derived from this classification also captured more variation than the simple indicators. Distance to nearest and count indicators showed clear differences between cities, and those specific to the mechanisms showed within-city differences for Barcelona and Doetinchem. This paper demonstrates the feasibility and challenges of creating comparable GIS-derived natural environment exposure indicators across diverse European cities. Mechanism-specific indicators showed within- and between-city variability that supports their utility for ecological studies, which could inform more specific policy recommendations than the traditional proxies for natural environment access.

Journal ArticleDOI
TL;DR: Results support use of the MAPS Abbreviated Online tool to reliably assess microscale neighborhood features that support physical activity and may be used by raters residing in different geographic regions and unfamiliar with the audit areas.
Abstract: An online version of the Microscale Audit of Pedestrian Streetscapes (Abbreviated) tool was adapted to virtually audit built environment features supportive of physical activity. The current study assessed inter-rater reliability of MAPS Online between in-person raters and online raters unfamiliar with the regions. In-person and online audits were conducted for a total of 120 quarter-mile routes (60 per site) in Phoenix, AZ and San Diego, CA. Routes in each city included 40 residential origins stratified by walkability and SES, and 20 commercial centers. In-person audits were conducted by raters residing in their region. Online audits were conducted by raters in the alternate location using Google Maps (Aerial and Street View) images. The MAPS Abbreviated Online tool consisted of four sections: overall route, street segments, crossings and cul-de-sacs. Items within each section were grouped into subscales, and inter-rater reliability (ICCs) was assessed for subscales at multiple levels of aggregation. Online and in-person audits showed excellent agreement for overall positive microscale (ICC = 0.86, 95% CI [0.80, 0.90]) and grand scores (ICC = 0.93, 95% CI [0.89, 0.95]). Substantial to near-perfect agreement was found for 21 of 30 (70%) subscales, valence, and subsection scores, with ICCs ranging from 0.62, 95% CI [0.50, 0.72] to 0.95, 95% CI [0.93, 0.97]. Lowest agreement was found for the aesthetics and social characteristics scores, with ICCs ranging from 0.07, 95% CI [−0.12, 0.24] to 0.27, 95% CI [0.10, 0.43]. Results support use of the MAPS Abbreviated Online tool to reliably assess microscale neighborhood features that support physical activity and may be used by raters residing in different geographic regions and unfamiliar with the audit areas.

Journal ArticleDOI
TL;DR: The authors compared approaches to measuring socioeconomic variation in the foodscape and found that the association was sensitive to the metric used, and studies need to consider the most appropriate measure for the research question.
Abstract: Retail food environments (foodscapes) are a recognised determinant of eating behaviours and may contribute to inequalities in diet. However, findings from studies measuring socioeconomic inequality in the foodscape have been mixed, which may be due to methodological differences. The aim of this cross-sectional study was to compare exposure to the foodscape by socioeconomic position using different measures, to test whether the presence, direction or amplitude of differences was sensitive to the choice of foodscape metric or socioeconomic indicator. A sample of 10,429 adults aged 30–64 years with valid home address data were obtained from the Fenland Study, UK. Of this sample, 7270 participants also had valid work location data. The sample was linked to data on food outlets obtained from local government records. Foodscape metrics included count, density and proximity of takeaway outlets and supermarkets, and the percentage of takeaway outlets relative to all food outlets. Exposure metrics were area-based (lower super output areas), and person-centred (proximity to nearest; Euclidean and Network buffers at 800 m, 1 km, and 1 mile). Person-centred buffers were constructed using home and work locations. Socioeconomic status was measured at the area-level (2010 Index of Multiple Deprivation) and the individual-level (highest educational attainment; equivalised household income). Participants were classified into socioeconomic groups and average exposures estimated. Results were analysed using the statistical and percent differences between the highest and lowest socioeconomic groups. In area-based measures, the most deprived areas contained higher takeaway outlet densities (p < 0.001). However, in person-centred metrics lower socioeconomic status was associated with lower exposure to takeaway outlets and supermarkets (all home-based exposures p < 0.001) and socioeconomic differences were greatest at the smallest buffer sizes. Socioeconomic differences in exposure was similar for home and combined home and work measures. Measuring takeaway exposure as a percentage of all outlets reversed the socioeconomic differences; the lowest socioeconomic groups had a higher percentage of takeaway outlets compared to the middle and highest groups (p < 0.001). We compared approaches to measuring socioeconomic variation in the foodscape and found that the association was sensitive to the metric used. In particular, the direction of association varied between area- and person-centred measures and between absolute and relative outlet measures. Studies need to consider the most appropriate measure for the research question, and may need to consider multiple measures as a single measure may be context dependent.

Journal ArticleDOI
TL;DR: A structured additive regression model is developed that is able to produce valid nationwide small area estimates of 26 health-related indicators at neighbourhood level in the Netherlands and can be used for local policy makers to make appropriate health policy decisions.
Abstract: Local policy makers increasingly need information on health-related indicators at smaller geographic levels like districts or neighbourhoods. Although more large data sources have become available, direct estimates of the prevalence of a health-related indicator cannot be produced for neighbourhoods for which only small samples or no samples are available. Small area estimation provides a solution, but unit-level models for binary-valued outcomes that can handle both non-linear effects of the predictors and spatially correlated random effects in a unified framework are rarely encountered. We used data on 26 binary-valued health-related indicators collected on 387,195 persons in the Netherlands. We associated the health-related indicators at the individual level with a set of 12 predictors obtained from national registry data. We formulated a structured additive regression model for small area estimation. The model captured potential non-linear relations between the predictors and the outcome through additive terms in a functional form using penalized splines and included a term that accounted for spatially correlated heterogeneity between neighbourhoods. The registry data were used to predict individual outcomes which in turn are aggregated into higher geographical levels, i.e. neighbourhoods. We validated our method by comparing the estimated prevalences with observed prevalences at the individual level and by comparing the estimated prevalences with direct estimates obtained by weighting methods at municipality level. We estimated the prevalence of the 26 health-related indicators for 415 municipalities, 2599 districts and 11,432 neighbourhoods in the Netherlands. We illustrate our method on overweight data and show that there are distinct geographic patterns in the overweight prevalence. Calibration plots show that the estimated prevalences agree very well with observed prevalences at the individual level. The estimated prevalences agree reasonably well with the direct estimates at the municipal level. Structured additive regression is a useful tool to provide small area estimates in a unified framework. We are able to produce valid nationwide small area estimates of 26 health-related indicators at neighbourhood level in the Netherlands. The results can be used for local policy makers to make appropriate health policy decisions.

Journal ArticleDOI
TL;DR: This research contributes to the literature on areal interpolation, demonstrating that combined population and areal weighting, compared to other tested methods, returns the most accurate estimates of mortality in transforming small counts by county to aggregated counts for large, non-standard study zones.
Abstract: Transforming spatial data from one scale to another is a challenge in geographic analysis. As part of a larger, primary study to determine a possible association between travel barriers to pediatric cancer facilities and adolescent cancer mortality across the United States, we examined methods to estimate mortality within zones at varying distances from these facilities: (1) geographic centroid assignment, (2) population-weighted centroid assignment, (3) simple areal weighting, (4) combined population and areal weighting, and (5) geostatistical areal interpolation. For the primary study, we used county mortality counts from the National Center for Health Statistics (NCHS) and population data by census tract for the United States to estimate zone mortality. In this paper, to evaluate the five mortality estimation methods, we employed address-level mortality data from the state of Georgia in conjunction with census data. Our objective here is to identify the simplest method that returns accurate mortality estimates. The distribution of Georgia county adolescent cancer mortality counts mirrors the Poisson distribution of the NCHS counts for the U.S. Likewise, zone value patterns, along with the error measures of hierarchy and fit, are similar for the state and the nation. Therefore, Georgia data are suitable for methods testing. The mean absolute value arithmetic differences between the observed counts for Georgia and the five methods were 5.50, 5.00, 4.17, 2.74, and 3.43, respectively. Comparing the methods through paired t-tests of absolute value arithmetic differences showed no statistical difference among the methods. However, we found a strong positive correlation (r = 0.63) between estimated Georgia mortality rates and combined weighting rates at zone level. Most importantly, Bland–Altman plots indicated acceptable agreement between paired arithmetic differences of Georgia rates and combined population and areal weighting rates. This research contributes to the literature on areal interpolation, demonstrating that combined population and areal weighting, compared to other tested methods, returns the most accurate estimates of mortality in transforming small counts by county to aggregated counts for large, non-standard study zones. This conceptually simple cartographic method should be of interest to public health practitioners and researchers limited to analysis of data for relatively large enumeration units.

Journal ArticleDOI
TL;DR: The USA and Western European nations, China and Japan constituted the scientific power players publishing the majority of highly cited ovarian cancer-related articles and dominated international collaborative efforts.
Abstract: Despite its impact on female health worldwide, no efforts have been made to depict the global architecture of ovarian cancer research and to understand the trends in the related literature. Hence, it was the objective of this study to assess the global scientific performance chronologically, geographically and in regards to economic benchmarks using bibliometric tools and density equalizing map projections. The NewQIS platform was employed to identify all ovarian cancer related articles published in the Web of Science since 1900. The items were analyzed regarding quantitative aspects (e.g. publication date, country of origin) and parameters describing the recognition of the work by the scientific community (e.g. citation rates). 23,378 articles on ovarian cancer were analyzed. The USA had the highest activity of ovarian cancer research with a total of n = 9312 ovarian cancer-specific publications, followed by the UK (n = 1900), China (n = 1813), Germany (n = 1717) and Japan (n = 1673). Ovarian cancer-specific country h-index also showed a leading position of the USA with an h-index (HI) of 207, followed by the UK (HI = 122), Canada (HI = 99), Italy (HI = 97), Germany (HI = 84), and Japan (HI = 81). In the socio-economic analysis, the USA were ranked first with an average of 175.6 ovarian cancer-related publications per GDP per capita in 1000 US-$, followed by Italy with an index level of 46.85, the UK with 45.48, and Japan with 43.3. Overall, the USA and Western European nations, China and Japan constituted the scientific power players publishing the majority of highly cited ovarian cancer-related articles and dominated international collaborative efforts. African, Asian and South American countries played almost no visible role in the scientific community. The quantity and scientific recognition of publications related to ovarian cancer are continuously increasing. The research endeavors in the field are concentrated in high-income countries with no involvement of lower-resource nations. Hence, worldwide collaborative efforts with the aim to exchange epidemiologic data, resources and knowledge have to be strengthened in the future to successfully alleviate the global burden related to ovarian cancer.

Journal ArticleDOI
TL;DR: There is suggestive evidence from the post-1990 literature that residential proximity to polluted sites might contribute to adverse reproductive outcomes, especially congenital malformations and low birth weight—though not mortality.
Abstract: This study aims to assess the evidence on adverse pregnancy outcome associated with living close to polluted industrial sites, and identify the strengths and weaknesses of published epidemiological studies A systematic literature search has been performed on all epidemiological studies published in developed countries since 1990, on the association between residential proximity to industrial sites (hazardous waste sites, industrial facilities and landfill sites) and adverse pregnancy outcome (low birth weight, preterm birth, small for gestational age, intrauterine growth retardation, infant mortality, congenital malformation) Based on 41 papers, our review reveals an excess risk of reproductive morbidity However, no studies show significant excess risk of mortality including fetal death, neonatal or infant mortality and stillbirth All published studies tend to show an increased risk of congenital abnormalities, yet not all are statistically significant All but two of these studies revealed an excess risk of low birth weight Results for preterm birth, small for gestational age and intrauterine growth retardation show the same pattern There is suggestive evidence from the post-1990 literature that residential proximity to polluted sites (including landfills, hazardous waste sites and industrial facilities) might contribute to adverse reproductive outcomes, especially congenital malformations and low birth weight—though not mortality This body of evidence has limitations that impede the formulation of firm conclusions, and new, well-focused studies are called for The review findings suggest that continued strengthening of rules governing industrial emissions as well as industrial waste management and improved land use planning are needed

Journal ArticleDOI
TL;DR: A spatio-temporal epidemiological approach to study the geographical patterns, trends over time, and the contextual determinants of child maltreatment risk can provide a useful method to inform policy and action.
Abstract: ‘Place’ matters in understanding prevalence variations and inequalities in child maltreatment risk. However, most studies examining ecological variations in child maltreatment risk fail to take into account the implications of the spatial and temporal dimensions of neighborhoods. In this study, we conduct a high-resolution small-area study to analyze the influence of neighborhood characteristics on the spatio-temporal epidemiology of child maltreatment risk. We conducted a 12-year (2004–2015) small-area Bayesian spatio-temporal epidemiological study with all families with child maltreatment protection measures in the city of Valencia, Spain. As neighborhood units, we used 552 census block groups. Cases were geocoded using the family address. Neighborhood-level characteristics analyzed included three indicators of neighborhood disadvantage—neighborhood economic status, neighborhood education level, and levels of policing activity—, immigrant concentration, and residential instability. Bayesian spatio-temporal modelling and disease mapping methods were used to provide area-specific risk estimations. Results from a spatio-temporal autoregressive model showed that neighborhoods with low levels of economic and educational status, with high levels of policing activity, and high immigrant concentration had higher levels of substantiated child maltreatment risk. Disease mapping methods were used to analyze areas of excess risk. Results showed chronic spatial patterns of high child maltreatment risk during the years analyzed, as well as stability over time in areas of low risk. Areas with increased or decreased child maltreatment risk over the years were also observed. A spatio-temporal epidemiological approach to study the geographical patterns, trends over time, and the contextual determinants of child maltreatment risk can provide a useful method to inform policy and action. This method can offer a more accurate description of the problem, and help to inform more localized prevention and intervention strategies. This new approach can also contribute to an improved epidemiological surveillance system to detect ecological variations in risk, and to assess the effectiveness of the initiatives to reduce this risk.

Journal ArticleDOI
TL;DR: If time spent walking outdoors and biking is relevant for the exposure to environmental factors, then relying on the home address as a proxy for exposure location may introduce misclassification, and performing GPS measurements and identifying explanatory factors of mobility patterns may assist in regression calibration of self-reports in other studies.
Abstract: The home address is a common spatial proxy for exposure assessment in epidemiological studies but mobility may introduce exposure misclassification. Mobility can be assessed using self-reports or objectively measured using GPS logging but self-reports may not assess the same information as measured mobility. We aimed to assess mobility patterns of a rural population in the Netherlands using GPS measurements and self-reports and to compare GPS measured to self-reported data, and to evaluate correlates of differences in mobility patterns. In total 870 participants filled in a questionnaire regarding their transport modes and carried a GPS-logger for 7 consecutive days. Transport modes were assigned to GPS-tracks based on speed patterns. Correlates of measured mobility data were evaluated using multiple linear regression. We calculated walking, biking and motorised transport durations based on GPS and self-reported data and compared outcomes. We used Cohen’s kappa analyses to compare categorised self-reported and GPS measured data for time spent outdoors. Self-reported time spent walking and biking was strongly overestimated when compared to GPS measurements. Participants estimated their time spent in motorised transport accurately. Several variables were associated with differences in mobility patterns, we found for instance that obese people (BMI > 30 kg/m2) spent less time in non-motorised transport (GMR 0.69–0.74) and people with COPD tended to travel longer distances from home in motorised transport (GMR 1.42–1.51). If time spent walking outdoors and biking is relevant for the exposure to environmental factors, then relying on the home address as a proxy for exposure location may introduce misclassification. In addition, this misclassification is potentially differential, and specific groups of people will show stronger misclassification of exposure than others. Performing GPS measurements and identifying explanatory factors of mobility patterns may assist in regression calibration of self-reports in other studies.

Journal ArticleDOI
TL;DR: The proposed new impedance model provides accurate estimations of human mobility, especially when the population distribution is highly heterogeneous, and can therefore help to achieve more accurate predictions of disease spread in the context of an epidemic.
Abstract: Mathematical models of human mobility have demonstrated a great potential for infectious disease epidemiology in contexts of data scarcity. While the commonly used gravity model involves parameter tuning and is thus difficult to implement without reference data, the more recent radiation model based on population densities is parameter-free, but biased. In this study we introduce the new impedance model, by analogy with electricity. Previous research has compared models on the basis of a few specific available spatial patterns. In this study, we use a systematic simulation-based approach to assess the performances. Five hundred spatial patterns were generated using various area sizes and location coordinates. Model performances were evaluated based on these patterns. For simulated data, comparison measures were average root mean square error (aRMSE) and bias criteria. Modeling of the 2010 Haiti cholera epidemic with a basic susceptible–infected–recovered (SIR) framework allowed an empirical evaluation through assessing the goodness-of-fit of the observed epidemic curve. The new, parameter-free impedance model outperformed previous models on simulated data according to average aRMSE and bias criteria. The impedance model achieved better performances with heterogeneous population densities and small destination populations. As a proof of concept, the basic compartmental SIR framework was used to confirm the results obtained with the impedance model in predicting the spread of cholera in Haiti in 2010. The proposed new impedance model provides accurate estimations of human mobility, especially when the population distribution is highly heterogeneous. This model can therefore help to achieve more accurate predictions of disease spread in the context of an epidemic.

Journal ArticleDOI
TL;DR: This research has revealed minor accessibility variation when edge effect has been considered in a French context and constitute a promising direction to determine more precisely healthcare shortage areas and then to fight against social health inequalities.
Abstract: Spatial accessibility indices are increasingly applied when investigating inequalities in health. Although most studies are making mentions of potential errors caused by the edge effect, many acknowledge having neglected to consider this concern by establishing spatial analyses within a finite region, settling for hypothesizing that accessibility to facilities will be under-reported. Our study seeks to assess the effect of edge on the accuracy of defining healthcare provider access by comparing healthcare provider accessibility accounting or not for the edge effect, in a real-world application. This study was carried out in the department of Nord, France. The statistical unit we use is the French census block known as ‘IRIS’ (Ilot Regroupe pour l’Information Statistique), defined by the National Institute of Statistics and Economic Studies. The geographical accessibility indicator used is the “Index of Spatial Accessibility” (ISA), based on the E2SFCA algorithm. We calculated ISA for the pregnant women population by selecting three types of healthcare providers: general practitioners, gynecologists and midwives. We compared ISA variation when accounting or not edge effect in urban and rural zones. The GIS method was then employed to determine global and local autocorrelation. Lastly, we compared the relationship between socioeconomic distress index and ISA, when accounting or not for the edge effect, to fully evaluate its impact. The results revealed that on average ISA when offer and demand beyond the boundary were included is slightly below ISA when not accounting for the edge effect, and we found that the IRIS value was more likely to deteriorate than improve. Moreover, edge effect impact can vary widely by health provider type. There is greater variability within the rural IRIS group than within the urban IRIS group. We found a positive correlation between socioeconomic distress variables and composite ISA. Spatial analysis results (such as Moran’s spatial autocorrelation index and local indicators of spatial autocorrelation) are not really impacted. Our research has revealed minor accessibility variation when edge effect has been considered in a French context. No general statement can be set up because intensity of impact varies according to healthcare provider type, territorial organization and methodology used to measure the accessibility to healthcare. Additional researches are required in order to distinguish what findings are specific to a territory and others common to different countries. It constitute a promising direction to determine more precisely healthcare shortage areas and then to fight against social health inequalities.

Journal ArticleDOI
TL;DR: This paper highlights how spatial optimization models can be used to improve healthy food access for food desert residents, which is a critical first step in ameliorating the health problems associated with lack ofhealthy food access including heart disease and obesity.
Abstract: Food access is a global issue, and for this reason, a wealth of studies are dedicated to understanding the location of food deserts and the benefits of urban gardens. However, few studies have linked these two strands of research together to analyze whether urban gardening activity may be a step forward in addressing issues of access for food desert residents. The Phoenix, Arizona metropolitan area is used as a case to demonstrate the utility of spatial optimization models for siting urban gardens near food deserts and on vacant land. The locations of urban gardens are derived from a list obtained from the Maricopa County Cooperative Extension office at the University of Arizona which were geo located and aggregated to Census tracts. Census tracts were then assigned to one of three categories: tracts that contain a garden, tracts that are immediately adjacent to a tract with a garden, and all other non-garden/non-adjacent census tracts. Analysis of variance is first used to ascertain whether there are statistical differences in the demographic, socio-economic, and land use profiles of these three categories of tracts. A maximal covering spatial optimization model is then used to identify potential locations for future gardening activities. A constraint of these models is that gardens be located on vacant land, which is a growing problem in rapidly urbanizing environments worldwide. The spatial analysis of garden locations reveals that they are centrally located in tracts with good food access. Thus, the current distribution of gardens does not provide an alternative food source to occupants of food deserts. The maximal covering spatial optimization model reveals that gardens could be sited in alternative locations to better serve food desert residents. In fact, 53 gardens may be located to cover 96.4% of all food deserts. This is an improvement over the current distribution of gardens where 68 active garden sites provide coverage to a scant 8.4% of food desert residents. People in rapidly urbanizing environments around the globe suffer from poor food access. Rapid rates of urbanization also present an unused vacant land problem in cities around the globe. This paper highlights how spatial optimization models can be used to improve healthy food access for food desert residents, which is a critical first step in ameliorating the health problems associated with lack of healthy food access including heart disease and obesity.

Journal ArticleDOI
TL;DR: A spatial regression approach to estimate district-level mortality during two extreme dust events in Hong Kong shows the ability to predict spatial variability of mortality risk during an extreme weather event that is not able to be estimated based on traditional time-series analysis or ecological studies.
Abstract: Dust events have long been recognized to be associated with a higher mortality risk. However, no study has investigated how prolonged dust events affect the spatial variability of mortality across districts in a downwind city. In this study, we applied a spatial regression approach to estimate the district-level mortality during two extreme dust events in Hong Kong. We compared spatial and non-spatial models to evaluate the ability of each regression to estimate mortality. We also compared prolonged dust events with non-dust events to determine the influences of community factors on mortality across the city. The density of a built environment (estimated by the sky view factor) had positive association with excess mortality in each district, while socioeconomic deprivation contributed by lower income and lower education induced higher mortality impact in each territory planning unit during a prolonged dust event. Based on the model comparison, spatial error modelling with the 1st order of queen contiguity consistently outperformed other models. The high-risk areas with higher increase in mortality were located in an urban high-density environment with higher socioeconomic deprivation. Our model design shows the ability to predict spatial variability of mortality risk during an extreme weather event that is not able to be estimated based on traditional time-series analysis or ecological studies. Our spatial protocol can be used for public health surveillance, sustainable planning and disaster preparation when relevant data are available.

Journal ArticleDOI
TL;DR: This work introduces a novel direct observational audit method and systematic social observation instrument (SSOI) for efficiently assessing neighbourhood aesthetics over large urban areas and demonstrates good to excellent interrater reliability.
Abstract: With the expansion and growth of research on neighbourhood characteristics, there is an increased need for direct observational field audits. Herein, we introduce a novel direct observational audit method and systematic social observation instrument (SSOI) for efficiently assessing neighbourhood aesthetics over large urban areas. Our audit method uses spatial random sampling stratified by residential zoning and incorporates both mobile geographic information systems technology and virtual environments. The reliability of our method was tested in two ways: first, in 15 Ottawa neighbourhoods, we compared results at audited locations over two subsequent years, and second; we audited every residential block (167 blocks) in one neighbourhood and compared the distribution of SSOI aesthetics index scores with results from the randomly audited locations. Finally, we present interrater reliability and consistency results on all observed items. The observed neighbourhood average aesthetics index score estimated from four or five stratified random audit locations is sufficient to characterize the average neighbourhood aesthetics. The SSOI was internally consistent and demonstrated good to excellent interrater reliability. At the neighbourhood level, aesthetics is positively related to SES and physical activity and negatively correlated with BMI. The proposed approach to direct neighbourhood auditing performs sufficiently and has the advantage of financial and temporal efficiency when auditing a large city.

Journal ArticleDOI
TL;DR: This study paves the way towards the design of new applications in the fields of environmental research, nature management, and public health and illustrates how Citizen Science initiatives produce geospatial data collections that can support scientific analysis, thus enabling the monitoring of complex environmental phenomena.
Abstract: Tick populations and tick-borne infections have steadily increased since the mid-1990s posing an ever-increasing risk to public health. Yet, modelling tick dynamics remains challenging because of the lack of data and knowledge on this complex phenomenon. Here we present an approach to model and map tick dynamics using volunteered data. This approach is illustrated with 9 years of data collected by a group of trained volunteers who sampled active questing ticks (AQT) on a monthly basis and for 15 locations in the Netherlands. We aimed at finding the main environmental drivers of AQT at multiple time-scales, and to devise daily AQT maps at the national level for 2014. Tick dynamics is a complex ecological problem driven by biotic (e.g. pathogens, wildlife, humans) and abiotic (e.g. weather, landscape) factors. We enriched the volunteered AQT collection with six types of weather variables (aggregated at 11 temporal scales), three types of satellite-derived vegetation indices, land cover, and mast years. Then, we applied a feature engineering process to derive a set of 101 features to characterize the conditions that yielded a particular count of AQT on a date and location. To devise models predicting the AQT, we use a time-aware Random Forest regression method, which is suitable to find non-linear relationships in complex ecological problems, and provides an estimation of the most important features to predict the AQT. We trained a model capable of fitting AQT with reduced statistical metrics. The multi-temporal study on the feature importance indicates that variables linked to water levels in the atmosphere (i.e. evapotranspiration, relative humidity) consistently showed a higher explanatory power than previous works using temperature. As a product of this study, we are able of mapping daily tick dynamics at the national level. This study paves the way towards the design of new applications in the fields of environmental research, nature management, and public health. It also illustrates how Citizen Science initiatives produce geospatial data collections that can support scientific analysis, thus enabling the monitoring of complex environmental phenomena.

Journal ArticleDOI
TL;DR: This urban space typology allowed to select a population living in areas representative of the uneven urbanization process, and to characterize its health status in regards to several indicators (nutritional status, communicable and non-communicable diseases, and anaemia) and appears as an alternative in developing countries where geographic and population data are scarce.
Abstract: Many cities in developing countries experience an unplanned and rapid growth. Several studies have shown that the irregular urbanization and equipment of cities produce different health risks and uneven exposure to specific diseases. Consequently, health surveys within cities should be carried out at the micro-local scale and sampling methods should try to capture this urban diversity. This article describes the methodology used to develop a multi-stage sampling protocol to select a population for a demographic survey that investigates health disparities in the medium-sized city of Bobo-Dioulasso, Burkina Faso. It is based on the characterization of Bobo-Dioulasso city typology by taking into account the city heterogeneity, as determined by analysis of the built environment and of the distribution of urban infrastructures, such as healthcare structures or even water fountains, by photo-interpretation of aerial photographs and satellite images. Principal component analysis and hierarchical ascendant classification were then used to generate the city typology. Five groups of spaces with specific profiles were identified according to a set of variables which could be considered as proxy indicators of health status. Within these five groups, four sub-spaces were randomly selected for the study. We were then able to survey 1045 households in all the selected sub-spaces. The pertinence of this approach is discussed regarding to classical sampling as random walk method for example. This urban space typology allowed to select a population living in areas representative of the uneven urbanization process, and to characterize its health status in regards to several indicators (nutritional status, communicable and non-communicable diseases, and anaemia). Although this method should be validated and compared with more established methods, it appears as an alternative in developing countries where geographic and population data are scarce.

Journal ArticleDOI
TL;DR: This system allows for two-way communication between researchers and the public, and a way to evaluate the reliability of VGI, and can provide valuable spatial information given that the data are reliable.
Abstract: Volunteered geographic information (VGI) has strong potential to be increasingly valuable to scientists in collaboration with non-scientists. The abundance of mobile phones and other wireless forms of communication open up significant opportunities for the public to get involved in scientific research. As these devices and activities become more abundant, questions of uncertainty and error in volunteer data are emerging as critical components for using volunteer-sourced spatial data. Here we present a methodology for using VGI and assessing its sensitivity to three types of error. More specifically, this study evaluates the reliability of data from volunteers based on their historical patterns. The specific context is a case study in surveillance of tsetse flies, a health concern for being the primary vector of African Trypanosomiasis. Reliability, as measured by a reputation score, determines the threshold for accepting the volunteered data for inclusion in a tsetse presence/absence model. Higher reputation scores are successful in identifying areas of higher modeled tsetse prevalence. A dynamic threshold is needed but the quality of VGI will improve as more data are collected and the errors in identifying reliable participants will decrease. This system allows for two-way communication between researchers and the public, and a way to evaluate the reliability of VGI. Boosting the public’s ability to participate in such work can improve disease surveillance and promote citizen science. In the absence of active surveillance, VGI can provide valuable spatial information given that the data are reliable.