scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Experimental Medicine in 1983"


Journal ArticleDOI
TL;DR: IFN gamma activates human macrophage oxidative metabolism and antimicrobial activity, and appeared to be the only factor consistently capable of doing so in the diverse LK preparations tested.
Abstract: Human blood mononuclear leukocytes stimulated with toxoplasma antigen, concanavalin A, mezerein plus lentil lectin, or staphylococcal enterotoxin A secreted a factor (macrophage-activating factor, or MAF) that enhanced the capacity of human macrophages to release H2O2 and to kill toxoplasmas. The same lymphoid supernatants contained IFN gamma but not IFN alpha or IFN beta. The MAF activity of six of seven unfractionated supernatants was completely eliminated by a monoclonal antibody that neutralizes IFN gamma, and MAF in the remaining supernatant was almost completely neutralized. Native IFN gamma partially purified by two independent protocols to specific activities of 1 X 10(6) and 10(7) U/mg protein was enriched in MAF activity at least as much as in antiviral activity. The capacity of macrophages to secrete H2O2 after incubation in partially purified native IFN gamma (mean peak stimulation, 8.8-fold) was greater than with unpurified lymphokines (3.8-fold) and sometimes equaled or exceeded the capacity of freshly harvested monocytes. The MAF activity of the partially purified native IFN gamma preparations was abolished by monoclonal anti-IFN gamma. Finally, IFN gamma of greater than 99% estimated purity was isolated (at Genentech, Inc.) from bacteria transformed with the cloned human gene for this lymphokine. Recombinant IFN gamma had potent MAF activity, stimulating the peroxide-releasing capacity of macrophages an average of 19.8-fold at peak response and enhancing their ability to kill toxoplasmas from 2.6 +/- 1.3% for untreated cells to 54 +/- 0.4% for treated cells. Attainment of 50% of the maximal elevation in peroxide-releasing capacity required a geometric mean concentration of 0.1 antiviral U/ml of recombinant IFN gamma, which is estimated to be approximately 6 picomolar for this preparation. Peroxide secretory capacity and toxoplasmacidal activity of macrophages peaked 2-4 d after exposure to IFN gamma. Peroxide-secretory capacity remained elevated during at least 6 d of continuous exposure, but the effect of IFN gamma was reversed within about 3 d of its removal. Activation was usually but not invariably accompanied by characteristic changes in cell morphology. Thus, IFN gamma activates human macrophage oxidative metabolism and antimicrobial activity, and appeared to be the only factor consistently capable of doing so in the diverse LK preparations tested.

1,811 citations


Journal ArticleDOI
TL;DR: LFA-1, OKM1, and p150,95 constitute a novel family of functionally important human leukocyte antigens that share a common beta-subunit.
Abstract: The human lymphocyte function-associated antigen-1 (LFA-1), the complement receptor-associated OKM1 molecule, and a previously undescribed molecule termed p150,95, have been found to be structurally and antigenically related. Each antigen contains an alpha- and beta-subunit noncovalently associated in an alpha 1 beta 1-structure as shown by cross-linking experiments. LFA-1, OKM1, and p150,95 alpha-subunit designations and their molecular weights are alpha L = 177,000 Mr, alpha M = 165,000 Mr, and alpha X = 150,000 Mr, respectively. The beta-subunits are all = 95,000 Mr. Some MAb precipitated only LFA-1, others only OKM1, and another precipitates all three antigens. The specificity of these MAb for particular subunits was examined after subunit dissociation by high pH. MAb specific for LFA-1 or OKM1 bind to the alpha L- or alpha M-subunits, respectively, while the cross-reactive MAb binds to the beta-subunits. Coprecipitation experiments with intact alpha 1 beta 1-complexes showed anti-alpha and anti-beta MAb can precipitate the same molecules. In two-dimensional (2D) isoelectric focusing-SDS-PAGE, the alpha subunits of the three antigens are distinct, while the beta-subunits are identical. Biosynthesis experiments showed alpha L, alpha M, and alpha X are synthesized from distinct precursors, as is beta. The three antigens differ in expression on lymphocytes, granulocytes, and monocytes. During maturation of the monoblast-like U937 line, alpha M and alpha X are upregulated and alpha L is downregulated. Some MAb to the alpha subunit of OKM1 inhibited the complement receptor type three. LFA-1, OKM1, and p150,95 constitute a novel family of functionally important human leukocyte antigens that share a common beta-subunit.

837 citations


Journal ArticleDOI
TL;DR: An antibody-secreting B cell hybridoma, KJ1-26.1, has been prepared from mice immunized with the T cell Hybridoma DO-11.10, which recognizes chicken ovalbumin in association with I-Ad (cOVA/I-Ad).
Abstract: An antibody-secreting B cell hybridoma, KJ1-26.1, has been prepared from mice immunized with the T cell hybridoma DO-11.10, which recognizes chicken ovalbumin in association with I-Ad (cOVA/I-Ad). KJ1-26.1 blocks I-restricted antigen recognition by DO-11.10 and a subclone of this T cell hybridoma, DO-11.10.24, which has the same specificity for cOVA/I-Ad as its parent. KJ1-26.1 does not block I-restricted antigen recognition by any other T cell hybridoma tested, including a number of T cell hybridomas closely related to DO-11.10, with similar, but not identical, specificities for antigen/I. Moreover, KJ1-26.1 binds to DO-11.10 and DO-11.10.24, but not to any other T cell hybridomas tested, including three subclones of DO-11.10 that have lost the ability to recognize cOVA/I-Ad. Thus, in every regard KJ1-26.1 appears to be binding to all or part of the receptors for antigen/I on the T cell hybridoma DO-11.10. KJ1-26.1 appears to bind to approximately 15,000 molecules/cell on the surface of DO-11.10. The antibody precipitates an 80,000 dimer from the cells, which on reduction migrates as 40-44,000 monomers. The receptor(s) for antigen/I on DO-11.10 therefore includes molecules with these properties.

829 citations


Journal ArticleDOI
TL;DR: The development of monoclonal antibodies to such polymorphic T cell surface structures should provide important probes to further define the surface receptor for antigen.
Abstract: Monoclonal antibodies were produced against a human cytotoxic T cell clone, CT8III (specificity: HLA-A3), with the view of defining clonally restricted (clonotypic) surface molecules involved in its antigen recognition function. Two individual antibodies, termed anti-Ti1A and anti-Ti1B, reacted exclusively with the CT8III clone when tested on a panel of 80 additional clones from the same donor, resting or activated T cells, B cells, macrophages, thymocytes, or other hematopoietic cells. More importantly, the two antibodies inhibited cell-mediated killing and antigen-specific proliferation of the CT8III clone but did not affect the functions of any other clone tested. This inhibition was not secondary to generalized abrogation of the CT8III clone's function, because interleukin 2 responsiveness was enhanced. To examine the relationship of the structures defined by anti-clonotypic antibodies with known T cell surface molecules, antibody-induced modulation studies and competitive binding assays were performed. The results indicated that the clonotypic structures were associated with, but distinct from, the 20,000-mol wt T3 molecule expressed on all mature T lymphocytes. Moreover, in contrast to anti-T3, anti-Ti1A and anti-Ti1B each immunoprecipitated two molecules of 49,000 and 43,000-mol wt from 131I-labeled CT8III cells under reducing conditions. The development of monoclonal antibodies to such polymorphic T cell surface structures should provide important probes to further define the surface receptor for antigen.

798 citations


Journal ArticleDOI
TL;DR: A small subpopulation of normal murine splenic B cells carrying all of the classic B cells markers (IgM, IgD, Ia, and ThB) also carries Ly-1, one of the major T cell surface molecules, which accounts for the previously reported "spontaneous" IgM secretion by NZB spleen cells in culture.
Abstract: A small subpopulation of normal murine splenic B cells carrying all of the classic B cells markers (IgM, IgD, Ia, and ThB) also carries Ly-1, one of the major T cell surface molecules. This "Ly-1 B" subpopulation (identified and characterized by multiparameter FACS analyses) consists of relatively large, high IgM/low-IgD/low-Ly-1 lymphocytes that represent approximately 2% of the spleen cells in normal animals and, generally, 5-10% of spleen cells in NZB mice. Ly-1 B are clearly detectable in all normal mouse strains tested as well as NZB, CBA/N, other X-id mice and nude (nu/nu) mice. They are found primarily in the spleen; are either absent or very poorly represented in lymph node, bone marrow, and thymus; appear early during ontogeny, and comprise about a third of the small number of lymphocytes present in 5-d-old mice. NZB and (NZB x NZW)F1 mice have more Ly-1 B than all other strains and, furthermore, have a unique Ly-1 B population that secretes IgM when cultured under usual conditions in the absence of added antigen. The IgM secretion by these Ly-1 B cells accounts for the previously reported "spontaneous" IgM secretion by NZB spleen cells in culture. Studies with FACS-sorted cells show that the presence of Ly-1 on these IgM-secreting cells distinguishes them from the (Ly-1 negative) IgM-secreting "direct" plaque-forming cells generated in NZB mice after stimulation with sheep erythrocytes.

789 citations


Journal ArticleDOI
TL;DR: The capacity of L. pneumophila to inhibit phagosome-lysosome fusion may be a critical mechanism by which the bacterium resists monocyte microbicidal effects.
Abstract: The interactions between the L. pneumophila phagosome and monocyte lysosomes were investigated by prelabeling the lysosomes with thorium dioxide, an electron-opaque colloidal marker, and by acid phosphatase cytochemistry. Phagosomes containing live L. pneumophila did not fuse with secondary lysosomes at 1 h after entry into monocytes or at 4 or 8 h after entry by which time the ribosome-lined L. pneumophila replicative vacuole had formed. In contrast, the majority of phagosomes containing formalin-killed L. pneumophila, live Streptococcus pneumoniae, and live Escherichia coli had fused with secondary lysosomes by 1 h after entry into monocytes. Erythromycin, a potent inhibitor of bacterial protein synthesis, at a concentration that completely inhibits L. pneumophila intracellular multiplication, had no influence on fusion of L. pneumophila phagosomes with secondary lysosomes. However, coating live L. pneumophila with antibody or with antibody and complement partially overcame the inhibition of fusion. Also activating the monocytes promoted fusion of a small proportion of phagosomes containing live L. pneumophila with secondary lysosomes. Acid phosphatase cytochemistry revealed that phagosomes containing live L. pneumophila did not fuse with either primary or secondary lysosomes. In contrast to phagosomes containing live bacteria, the majority of phagosomes containing formalin-killed L. pneumophila were fused with lysosomes by acid phosphatase cytochemistry. The capacity of L. pneumophila to inhibit phagosome-lysosome fusion may be a critical mechanism by which the bacterium resists monocyte microbicidal effects.

691 citations


Journal ArticleDOI
TL;DR: The results suggest that antigen fragmentation may be both necessary and sufficient to define accessory cell processing of soluble antigens so that they may be recognized in association with I- region molecules by T cells.
Abstract: We examined the ability of a set of cloned chicken ovalbumin (cOVA)-specific, Id-restricted, T cell hybridomas to produce interleukin-2 in response to cOVA presented by the Ia+ B cell lymphoma line, A20-2J Although viable A20-2J cells presented native, denatured, and fragmented cOVA more or less equally well, A20-2J cells that were glutaraldehyde-fixed could present only enzymatically or chemically fragmented cOVA These results suggest that antigen fragmentation may be both necessary and sufficient to define accessory cell processing of soluble antigens so that they may be recognized in association with I-region molecules by T cells

657 citations


Journal ArticleDOI
Jonathan Kaye1, Steven Porcelli1, John Tite1, Barry Jones1, Charles A. Janeway1 
TL;DR: The specificity of these antibodies and their ability to stimulate cloned helper T cells in the absence of antigen and antigen-presenting cells strongly suggest that these antibodies are directed against antigen and/or Ia recognition sites on the T cell.
Abstract: Two antisera and a monoclonal antibody raised in BALB.K mice against cloned, major histocompatibility complex (MHC)-restricted, antigen-specific helper T cell lines are described. These antibodies are specific for individual cloned T cell lines and are potent inducers of T cell proliferation. The induction of T cell proliferation by these antibodies requires the presence of an adherent accessory cell. There is no H-2 restriction between this accessory cell and the cloned T cell, nor is this antibody-induced proliferation blocked by a monoclonal anti-Fc receptor antibody. The requirement for an accessory cell, however, is eliminated in the presence of an IL-1- or IL-2-rich supernatant. Thus this system allows the analysis of helper T cell activation with only a single cell type present. Anti-T cell sera also induce T cell-dependent B cell proliferation and immunoglobulin secretion. The induction of T cell-dependent B cell activation by these sera does not require H-2-matched T cells and B cells. The specificity of these antibodies and their ability to stimulate cloned helper T cells in the absence of antigen and antigen-presenting cells strongly suggest that these antibodies are directed against antigen and/or Ia recognition sites on the T cell.

621 citations


Journal ArticleDOI
TL;DR: The L. pneumophila- containing vacuole has certain features in common with other intracellular organisms that inhibit phagosome-lysosome fusion; these organisms may share a common mechanism for vacuoles formation and inhibition of phagosomes-lysOSome fusion.
Abstract: Previous studies have shown that L. pneumophila multiplies intracellularly in human monocytes and alveolar macrophages within a membrane-bound cytoplasmic vacuole studded with ribosomes. In this paper, the formation of this novel vacuole is examined. After entry into monocytes, L. pneumophila resides in a membrane-bound vacuole. During the first hour after entry, vacuoles containing L. pneumophila are found surrounded by smooth vesicles fusing with or budding off from the vacuolar membrane and by mitochondria closely apposed to the vacuolar membrane. By 4 h, vacuoles are found less frequently surrounded by these cytoplasmic organelles, but now ribosomes and rough vesicles are found gathered about the vacuole. By 8 h, the ribosome-lined vacuole has formed. Erythromycin, at concentrations that completely inhibit the intracellular multiplication of L. pneumophila, has no effect on vacuole formation. Formalin-killed L. pneumophila also reside in a membrane-bound vacuole after entry into monocytes. In contrast to the situation with live L. pneumophila, cytoplasmic organelles are not found surrounding vacuoles containing formalin-killed L. pneumophila at any time after entry. Formalin-killed bacteria are rapidly digested, and by 4 h, few remain intact. The L. pneumophila-containing vacuole has certain features in common with other intracellular organisms that inhibit phagosome-lysosome fusion; these organisms may share a common mechanism for vacuole formation and inhibition of phagosome-lysosome fusion.

606 citations


Journal ArticleDOI
TL;DR: The awareness of the transience and the antigen/lectin dependence of IL-2 receptor expression, together with the capacity to monitor T cell cultures for IL- 2 receptor levels, should facilitate the initiation and maintenance of cloned, antigen-specific T cells in long-term culture.
Abstract: T lymphocyte mitosis results from the interaction of interleukin 2 (IL-2) with specific receptors that appear only after appropriate immune stimulation. To assess the potential role of IL-2 receptor levels in determining the rate and magnitude of T cell proliferation, the expression of IL-2 receptors by lectin-stimulated human peripheral blood T cells was examined and correlated with T cell growth. Using biosynthetically radiolabeled IL-2 and anti-Tac, a monoclonal antibody that blocks IL-2 receptor binding, IL-2 receptors were found to accumulate slowly and asynchronously among lectin-stimulated T cells and to precede the onset of DNA synthesis. Moreover, a critical threshold of IL-2 receptor density appeared to be required before the commitment to cell cycle progression, as analyzed quantitatively by tritiated thymidine incorporation and flow cytometric analysis of cellular DNA content. Once maximal IL-2 receptor expression occurred, continued proliferation was IL-2 concentration dependent as assessed using homogenous immunoaffinity-purified IL-2. Upon removal of the activating lectin, IL-2 receptor levels progressively declined, and, in parallel, the rate of proliferation diminished. The decay of IL-2 receptors could not be attributed to IL-2-mediated down-regulation. Instead, renewed IL-2 receptor expression was dependent upon the reintroduction of the initial activating signal. Repetitive exposure to lectin resulted in a more rapid reexpression of maximal IL-2 receptor levels, which was then followed by an accelerated resumption of proliferation. Thus, the extent of T cell proliferation after immune stimulation depends upon the interplay of the IL-2 concentration available and the density of IL-2 receptors expressed, both of which are ultimately determined by antigen/lectin stimulation. The awareness of the transience and the antigen/lectin dependence of IL-2 receptor expression, together with the capacity to monitor T cell cultures for IL-2 receptor levels, should facilitate the initiation and maintenance of cloned, antigen-specific T cells in long-term culture. In addition, these findings suggest that, in vivo, the rapidity of acquisition of maximum IL-2 receptor levels by activated T cells and the duration of IL-2 receptor expression may well direct the magnitude of T cell clonal expansion and resultant immune responses.

580 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used radioimmunoassay, fluorescence flow cytometry, and ultrastructural immunocytochemistry to measure expression of Ia antigens on cultured human umbilical vein endothelial (HUVE) cells.
Abstract: We have used monoclonal antibody binding, measured by radioimmunoassay, fluorescence flow cytometry, and ultrastructural immunocytochemistry, to measure expression of Ia antigens on cultured human umbilical vein endothelial (HUVE) cells. Under standard culture conditions, HUVE cells do not express Ia antigens. However, treatment of primary HUVE cultures with phytohemagglutinin induces the expression of Ia antigens. Every endothelial cell in the culture becomes Ia-positive and endothelial cells appear to synthesize Ia. HLA-A,B is concomitantly increased. The expression of Ia appears to be mediated by T cells because (a) pretreatment of primary HUVE cultures with OKT3 plus complement blocks the action of the lectins but not of medium conditioned by lectin-activated peripheral blood mononuclear cells; (b) co-culture of endothelial cells with allogeneic T cells, in the absence of lectin, also induces endothelial Ia; and (c) human immune (gamma) interferon, produced by Chinese hamster ovary cells transfected with the human gamma interferon gene, directly induces endothelial Ia. During co-culture with lymphocytes, about one-third of the endothelial cells are Ia-positive after 24 h and all of the endothelial cells are Ia-positive by 72 h. Proliferation of allogeneic T cells starts by 96 h and peaks at 144 h. Thus, endothelial Ia appears sufficiently early to be a determinant for the proliferation of allogeneic T cells. Inducible expression of Ia by endothelium may be important both for allograft rejection and for recruitment of circulating T cells into the site of an immune response.

Journal ArticleDOI
TL;DR: Data indicate that adenosine (at concentrations that are present in plasma) acting via cell surface receptors is a specific modulator of superoxide anion generation by neutrophils.
Abstract: The effects of adenosine were studied on human neutrophils with respect to their generation of superoxide anion, degranulation, and aggregation in response to soluble stimuli. Adenosine markedly inhibited superoxide anion generation by neutrophils stimulated with N-formyl methionyl leucyl phenylalanine (FMLP), concanavalin A (Con A), calcium ionophore A23187, and zymosan-treated serum; it inhibited this response to PMA to a far lesser extent. The effects of adenosine were evident at concentrations ranging from 1 to 1,000 microM with maximal inhibition at 100 microM. Cellular uptake of adenosine was not required for adenosine-induced inhibition since inhibition was maintained despite the addition of dipyridamole, which blocks nucleoside uptake. Nor was metabolism of adenosine required, since both deoxycoformycin (DCF) and erythro-9-(2-hydroxy-3-nonyl) adenine did not interfere with adenosine inhibition of superoxide anion generation. The finding that 2-chloroadenosine, which is not metabolized, resembled adenosine in its ability to inhibit superoxide anion generation added further evidence that adenosine metabolism was not required for inhibition of superoxide anion generation by neutrophils. Unexpectedly, endogenously generated adenosine was present in supernatants of neutrophil suspensions at 0.14-0.28 microM. Removal of endogenous adenosine by incubation of neutrophils with exogenous adenosine deaminase (ADA) led to marked enhancement of superoxide anion generation in response to FMLP. Inactivation of ADA with DCF abrogated the enhancement of superoxide anion generation. Thus, the enhancement was not due to a nonspecific effect of added protein. Nor was the enhancement due to the generation of hypoxanthine or inosine by deamination of adenosine, since addition of these compounds did not affect neutrophil function. Adenosine did not significantly affect either aggregation or lysozyme release and only modestly affected beta-glucuronidase release by neutrophils stimulated with FMLP. These data indicate that adenosine (at concentrations that are present in plasma) acting via cell surface receptors is a specific modulator of superoxide anion generation by neutrophils.

Journal ArticleDOI
TL;DR: The C3b and C3bi receptors of monocytes and granulocytes do not signal the generation of toxic oxygen intermediates from these cells, and release of H2O2 is measured during spreading on ligand-coated culture surfaces.
Abstract: We have measured the release of H2O2 from granulocytes, monocytes, and macrophages during spreading on ligand-coated culture surfaces. While IgG-coated surfaces stimulate vigorous release of H2O2, neither C3b- nor C3bi-coated surfaces promoted appreciable release of H2O2 despite full ligation of C3b and C3bi receptors. We also measured release of H2O2 from cultured monocytes spreading on surfaces coated with both fibronectin and C3. Under such circumstances, the C3 receptors elicit a strong phagocytic response, but no H2O2 release was recorded. We conclude that the C3b and C3bi receptors of monocytes and granulocytes do not signal the generation of toxic oxygen intermediates from these cells.

Journal ArticleDOI
TL;DR: While the cell(s) responsible for activation and expression of LAK activity have some common features with the classic T cell-mediated CTL and NK cell systems, the LAK precursor cells are clearly distinct as determined by phenotype analysis using monoclonal antibodies and complement, and at present must be classified as a “null” cell.
Abstract: Culture of human peripheral blood lymphocytes (PBL) in partially purified and lectin-free interleukin 2 results in the generation of cytotoxic effector cells which have the unique property of lysing natural killer (NK)-resistant fresh human tumor cells. We have termed these effector cells "lymphokine- activated killer" cells (LAK). LAK are generated from both normal and cancer patients' PBL and are able to lyse both autologous and allogeneic tumor cells from all histologic tumor types tested. Our previous studies suggested that the LAK phenomenon was distinct from either the cytotoxic thymus-derived lymphocyte (CTL) or NK systems based on a variety of criteria. This study reports that the cell type involved is also distinct, as determined by phenotypic characteristics. The LAK effector cell phenotype was analyzed in parallel with alloimmune CTL, and LAK were found to be similarly susceptible to the monoclonal anti-T cell antibodies OKT-3 or OKT-8 plus complement. In contrast the LAK precursor was not susceptible to the OKT-3 or Leu-1 antibodies plus complement, while the ability to generate alloimmune CTL was totally obliterated when tested using the same PBL responder population; in fact, generation of LAK was found to be augmented five- to sixfold, clearly suggesting that LAK precursor cells are not T lymphocytes as defined by these antibodies. LAK precursors were found to be abundant in NK cell-enriched Percoll gradient fractions, which had been depleted of the 29 degrees C E- rosetting "high affinity" T cells. However, LAK precursors were found to be distinct from the majority of NK cells since lysis of fresh PBL with the monoclonal antibodies OKM-1, Leu-7, or OKT-11 significantly depleted or totally eliminated NK activity, while subsequent activation of the remaining cells generated high levels of LAK and in some cases augmented levels of LAK. LAK precursors were found to be distributed in the thymus, bone marrow, spleen, lymph node, and thoracic duct in addition to the PBL. Therefore, while the cell(s) responsible for activation and expression of LAK activity have some common features with the classic T cell-mediated CTL and NK cell systems, the LAK precursor cells are clearly distinct as determined by phenotype analysis using monoclonal antibodies and complement, and at present must be classified as a "null" cell.

Journal ArticleDOI
TL;DR: The hypothesis is advanced that the photoreceptor for systemic UV- induced immunosuppression of contact hypersensitivity may be urocanic acid, which may also play a role in UV-induced carcinogenesis via the production of tumor-specific suppressor cells.
Abstract: UV irradiation of mice causes a systemic immune alteration that can be detected either by suppression of the immunologic rejection of UV-induced tumors, or by suppression of contact hypersensitivity (CHS). Suppression of these two immunologic responses has similar photobiologic characteristics and in both cases is associated with the generation of antigen-specific suppressor T cells. To identify whether a specific photoreceptor for this effect exists, the relative wavelength effectiveness (action spectrum) was determined for the UV-induced suppression of CHS. Narrow bands of UV (half bandwidth 3 nm) were used at 10 wavelengths from 250 to 320 nm to obtain dose-response curves. Irradiation with each of these bands of UV caused dose-dependent immunosuppression of CHS, but with differing effectiveness. Immunosuppression was clearly separable from the generation of gross skin damage and inflammation. Further, immunosuppression by the most effective wavelength (270 nm) was associated with the generation of antigen-specific suppressor cells. The action spectrum derived from the dose-response curves has a maximum between 260 and 270 nm, a shoulder at 280-290 nm, and declines steadily to approximately 3% of maximum at 320 nm. The finding of such a clearly defined wavelength dependence implies the presence of a specific photoreceptor for this effect. Removing the stratum corneum by tape stripping before UV irradiation prevented the suppression of CHS using 254-nm radiation, suggesting the photoreceptor is superficially located in the skin. A number of epidermal compounds with absorption spectra similar to the action spectrum are discussed and evaluated with respect to their potential for being the photoreceptor. Based on (a) the close fit of its absorption spectrum to the action spectrum, (b) its superficial location in the stratum corneum, and (c) its photochemical properties, the hypothesis is advanced that the photoreceptor for systemic UV-induced immunosuppression of contact hypersensitivity may be urocanic acid. As such, it may also play a role in UV-induced carcinogenesis via the production of tumor-specific suppressor cells.

Journal ArticleDOI
TL;DR: The immunocytochemical and immunoprecipitation data indicate that the nephritogenic HN antigen is present in renal glomeruli as well as in proximal tubular brush borders and further demonstrate that gp330 is an epithelial, rather than a glomerular basement membrane, antigen.
Abstract: The nephritogenic antigen of Heymann's nephritis (HN) was previously purified from tubular brush-border fractions of rat kidney and found to be a 330,000- mol-wt glycoprotein (gp330). This study was conducted to determine whether gp330 is also present in the rat glomerulus, and, if so, to establish where in the glomerulus it is located. Rabbit polyclonal and mouse monoclonal antibodies were raised against purified gp330, which specifically immunoprecipitated gp330 from solubilized brush-border fractions and specifically stained microvilli and coated invaginations (located at the base of the microvilli) of proximal tubule cells. Accordingly, they were used to localize gp330 by immunoprecipitation and immunocytochemistry in glomeruli of normal Lewis rats. For immunoprecipitation, purified glomerular fractions were prepared from [(35)S]-methionine-labeled kidneys, extracted with Triton X-100, and the extract was used for immunoprecipitation with affinity-purified rabbit polyclonal, or mouse monoclonal, anti-gp330 IgG. Analysis of immunoprecipitates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis fluorography indicated that a band corresponding in mobility to gp330 was specifically precipitated. When unfixed cryostat sections were incubated for indirect immunofluorescence with monoclonal or affinity-purified polyclonal IgG, a fine granular fluorescent staining was seen throughout the glomerulus. When aldehyde-fixed cryostat sections were incubated for indirect immunoperoxidase, reaction product was detected only in the epithelial cells and was not seen in the GBM, endothelium, or mesangium. Within the epithelium it was localized to the endoplasmic reticulum, occasional Golgi elements, multivesicular bodies, and coated pits at the cell surface. The reactive coated pits were distributed all along the cell membrane, including the sides and base of the foot processes. Reaction product was detected in the latter location only in sections that had been digested with neuraminidase before antibody incubation. When rats were given rabbit anti-gp330 IgG by intravenous injection and their kidneys stained for direct immunoperoxidase 3 d later, rabbit IgG was seen to be deposited beneath the slit diaphragms and in the coated pits at the base of the foot processes. The immunocytochemical and immunoprecipitation data indicate, in confirmation of the results of others, that the nephritogenic HN antigen is present in renal glomeruli as well as in proximal tubular brush borders. The immunocytochemical results further demonstrate that gp330 is an epithelial, rather than a glomerular basement membrane, antigen. It appears to be synthesized by glomerular epithelial cells and subsequently becomes concentrated in coated pits. As both the endogenous antigen (gp330) and exogenously administered anti-gp330 antibody were localized to coated pits, it seems likely that coated pits located at the base of the foot processes are the sites where the HN antigen (gp330) and circulating antibodies directed against gp330 meet and where immune complexes are formed.

Journal ArticleDOI
TL;DR: It is demonstrated that the helper T cell clone can be inhibited by the relevant peptide in the absence of any suppressor cells or their precursors, suggesting that antigen-induced unresponsiveness need not always depend on the presence of suppressor T cells.
Abstract: Antigen-specific human T cell clones specific for defined peptides of influenza A hemagglutinin were found to be rendered unresponsive by incubation with moderately high concentrations of antigen. This was the case whether the synthetic peptide antigen was present for the duration of the culture or the cloned T cells were preincubated with antigen for 3-18 h at 37 degrees C, before stimulation with T-depleted irradiated sheep erythrocyte non-rosette-forming lymphocytes (E-) pulsed with the optimal dose of peptide. Tolerance could not be overcome by culture with various numbers of E- cells and antigen. The induction of unresponsiveness was antigen specific, since it depended upon incubation with the appropriate peptide recognized by that clone. In addition, the tolerant T cells remained unresponsive to stimulation with the specific peptide for at least 7 d after induction even though maintained in culture in the presence of T cell growth factor. This state of antigen-specific unresponsiveness is akin to immunological tolerance. Furthermore, the experiments reported here demonstrate that the helper T cell clone can be inhibited by the relevant peptide in the absence of any suppressor cells or their precursors. This suggests that antigen-induced unresponsiveness need not always depend on the presence of suppressor T cells. The induction of tolerance in T cell clones does not result in early T cell death, since cells that no longer proliferate in response to the specific antigen and accessory cells still proliferate in response to T cell growth factor.

Journal ArticleDOI
TL;DR: Although susceptibility to arthritis from immunization is H-2 linked, these studies clearly demonstrate that passive transfer of arthritis depends upon injection of specific antibody and not on other host factors.
Abstract: Immunization of DBA/1 mice with native chick type II collagen resulted in development of polyarthritis 4-5 wk later. Sera of these mice contained high levels of anticollagen antibodies, and immunoglobulin concentrates of their sera transferred arthritis to unimmunized recipients. Histopathologically, this passively transferred arthritis resembled the early disease of immunized donors. Immunofluorescence studies demonstrated the deposition of IgG and C3 on the articular surface but not in synovial tissue of arthritic joints. Transferred, isotopically labeled anticollagen antibodies rapidly localized to the limbs and to other cartilage-containing tissues. When transfer concentrate was administered to arthritis-resistant strains, they also developed arthritis. Indeed, immunoglobulin concentrates from rats with collagen-induced arthritis transferred arthritis to naive mice. The amount of concentrate required for transfer to B10.D2 resistant mice was reduced by immunizing them with collagen 4 wk before transfer. Although susceptibility to arthritis from immunization is H-2 linked, these studies clearly demonstrate that passive transfer of arthritis depends upon injection of specific antibody and not on other host factors.

Journal ArticleDOI
TL;DR: Results imply that anticlonotypic antibody functions in a fashion analogous to antigen and further support the notion that the T3-Ti molecular complex represents the antigen receptor on human T lymphocytes.
Abstract: Recent studies suggested that the clonally unique Ti epitopes defined by non-cross-reactive monoclonal antibodies might represent the variable regions of the antigen receptor. Here we determine whether such anti-Ti antibodies could trigger clonal T cell activation. Anticlonotypic monoclonal antibodies to the 49/43-kdalton heterodimer of a given clone or antibodies to the 20/25-kdalton membrane associated monomorphic T3 molecule selectively induce proliferation and IL-2 secretion when linked to a solid support. In contrast, anti-T4 and anti-T8 antibodies under the same conditions have no effect. In conclusion, these results imply that anticlonotypic antibody functions in a fashion analogous to antigen and further support the notion that the T3-Ti molecular complex represents the antigen receptor on human T lymphocytes.

Journal ArticleDOI
TL;DR: Purified interleukin 2 (IL-2) was found to be sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer (LAK) cells and no other cytokines have been found that perform the same role.
Abstract: Purified interleukin 2 (IL-2) was found to be sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer (LAK) cells. The LAK activation factor was directly and consistently associated with IL-2 activity using classic protein purification techniques, adsorption to IL-2-dependent cell lines, and inhibition with anti-Tac antibody. As yet, no other cytokines have been found that perform the same role.

Journal ArticleDOI
TL;DR: The macrophage-specific antigen F4/80 has been localized in mouse lymphoid and hematopoietic tissue and skin using immunoperoxidase staining and it is concluded that the two cell types are probably not related.
Abstract: The macrophage-specific antigen F4/80 has been localized in mouse lymphoid and hematopoietic tissue and skin using immunoperoxidase staining. The antigen permits identification of early mononuclear phagocyte precursors in the bone marrow, and is present also on larger cells forming the center of hematopoietic islands and lining vascular sinuses. In thymus F4/80+ cells are numerous in both cortex and medulla and are particularly concentrated around the corticomedullary region. In spleen, lymph node, and gut-associated lymphoid areas the major F4/80+ populations are in the red pulp, the medulla and subcapsular sinus, and the adjacent lamina propria, respectively. F4/80+ cells are rarely seen in T-dependent areas of lymph nodes, spleen, or Peyer's patch, but are present in large numbers in these areas during bacillus Calmette-Guerin (BCG)-induced inflammation. Macrophage infiltration occurs also in lymph nodes from athymic nu/nu mice and is therefore T cell independent. The interdigitating cell of T-dependent areas is F4/80-, but the Langerhans cell of the epidermis of the skin, which bears some ultrastructural resemblance to the interdigitating cell, is F4/80+. We conclude that the two cell types are probably not related.

Journal ArticleDOI
TL;DR: It is proposed that ultraviolet radiation produces its effects by impairing the antigen- presenting potential of resident Langerhans cells in whose absence hapten-derivatized keratinocytes (or their products) are able to deliver a tolerogenic signal.
Abstract: Acute, low dose ultraviolet B radiation of murine body wall skin followed by local application of DNFB produces a state of antigen-specific unresponsiveness. This state is maintained at least in part by an Lyt-1+ T cell that effects unresponsiveness by impairing the induction phase of contact hypersensitivity. The absence of suppressor cells capable of acting at the effector stage of immunity suggests that tolerogenic signals derived from the skin establish suppressor networks that are incomplete and perhaps different from networks that are induced by systemic administration of tolerogens. It is proposed that ultraviolet radiation produces its effects by impairing the antigen-presenting potential of resident Langerhans cells in whose absence hapten-derivatized keratinocytes (or their products) are able to deliver a tolerogenic signal.

Journal ArticleDOI
TL;DR: The evidence presented suggests that nonlymphoid cells (NLC) closely resemble mouse lymphoid dendritic cells, supported by evidence already obtained showing that NLC are potent stimulators of the semi-allogeneic rat primary mixed leukocyte reaction.
Abstract: Mesenteric lymphadenectomy in rats is followed by union of peripheral and central lymphatics, allowing the collection of intestine-derived peripheral lymph cells via the thoracic duct for several days. These cells include a proportion of nonlymphoid cells (NLC) that show irregular and heterogeneous surface morphology including long pseudopodia and veils. They stain variably for nonspecific esterase and acid phosphatase and are ATPase-positive. Their nuclei are irregular and some contain cytoplasmic inclusions, some of which show peroxidase activity and/or contain DNA. NLC have a range of densitites generally lower than that of lymphocytes. Freshly collected NLC express the leukocyte-common antigen (defined by monoclonal antibody MRC Ox 1) and Ia antigens (I-A and I-E subregion products defined by monoclonal antibodies) but they show a relative lack of other surface markers normally found on rat B or T lymphocytes (W3/13, W3/25, MRC Ox 12 (sIg), MRC Ox 19) or rat macrophages (FcR, C'R, mannose R, W3/25). In general NLC are only weakly adherent to glass or plastic. Although a subpopulation of NLC appear to have had a phagocytic past, freshly collected NLC fail to phagocytose a variety of test particles in vitro. NLC also appear incapable of pinocytosis in vitro. This heterogeneity may represent distinct subpopulations of NLC or different stages in the development of a single cell lineage. Direct cannulation of mesenteric lacteals shows that the majority of NLC are derived from the small intestine and their precursors appear to be present both in lamina propria and Peyer's patches. Kinetic studies, following irradiation or intravenous tritiated thymidine, show that the majority of NLC turn over rapidly in the intestine with a modal time of 3-5 d. Studies with bone marrow chimeras show that they are derived from a rapidly dividing precursor present in normal bone marrow. NLC occur at very low frequencies in normal thoracic duct lymph at all times following cannulation. The evidence presented suggests that NLC closely resemble mouse lymphoid dendritic cells. This conclusion is supported by evidence already obtained showing that NLC are potent stimulators of the semi-allogeneic rat primary mixed leukocyte reaction. In addition to the ceils resembling dendritic cells rare monocytoid cells are found in thoracic duct lymph of lymphadenectomized specific pathogen-free rats. The proportion of these cells increases greatly when the animals are conventionally housed. It seems probable that the physiological function of NLC is to act as accessory cells in the lymph nodes to which they normally drain. Methods for enriching NLC and thus facilitating analysis of their functions are discussed.

Journal ArticleDOI
TL;DR: A limiting dilution microculture system using PHA as T cell activator and supernatant from PHA-stimulated spleen cultures as a source of T cell growth factors appears now possible to determine the precursor frequencies of the various classes of functional cells in T cell populations.
Abstract: In an attempt to determine the clonogenic properties of human peripheral blood T cells, we have developed a limiting dilution microculture system using phytohemagglutinin (PHA) as T cell activator and supernatant from PHA-stimulated spleen cultures as a source of T cell growth factors. The frequencies of cells capable of extensive proliferation under these culture conditions were 0.52-0.73, 0.98-1.11, and less than 0.02 in peripheral blood mononuclear, E-rosette-positive, and E-rosette-negative cell populations, respectively. The clonogenic potential of virtually all T cells was confirmed in experiments using single cells isolated by micromanipulation. Clone size ranged between 5 and 30 X 10(4) cells on day 14 of culture. The same microculture system was used to determine the precursor frequency of all cytolytic T lymphocytes (CTL-P). As assessed by a lectin-dependent 51Cr release assay, the CTL-P frequency in purified T cell populations ranged between 0.30 and 0.34. In comparison, the precursor frequency of T cells capable of lysing K562 target cells was ranging between 0.14 and 0.16. Parallel analysis of individual clonal cultures for both lytic activities showed that 50% of the clones exhibiting lectin-dependent lysis were also active against K562 target cells. All of the proliferating clones expressed HLA-DR antigens, although to a varying degree as assessed by flow cytofluorometry. Given the high cloning efficiency of this culture system, it appears now possible to determine the precursor frequencies of the various classes of functional cells in T cell populations.

Journal ArticleDOI
TL;DR: It is found that interleukin 1, released in vivo by macrophages infiltrating sites of tissue damage or inflammation, may function to stimulate the release of collagenase by connective tissue fibroblasts.
Abstract: Interleukin 1 is a monokine that exerts biological effects on a variety of target cells in vitro. In this report, interleukin 1 has been found to be capable of stimulating collagenase production by cultured dermal fibroblasts. The concentrations of interleukin 1 that stimulate fibroblast collagenase production are similar to those that stimulate mouse thymocyte proliferation. Analyses by high performance liquid chromatography indicate that interleukin 1, rather than a contaminating monokine, is responsible for this effect on fibroblasts. Interleukin 1, released in vivo by macrophages infiltrating sites of tissue damage or inflammation, may function to stimulate the release of collagenase by connective tissue fibroblasts.

Journal ArticleDOI
TL;DR: It is demonstrated that MBP from human eosinophil granules initiates a nonlytic histamine release from human leukocytes and stimulated histamine secretion from purified rat peritoneal mast cells in a manner characteristic of other polycations.
Abstract: Major basic protein (MBP) is a primary constituent of eosinophil granules. In this report, we demonstrate that MBP from human eosinophil granules initiates a nonlytic histamine release from human leukocytes. A direct effect of MBP on basophils was confirmed using purified human basophils. The kinetics of release were similar to those reported for poly-L-arginine, although MBP was less potent than poly-L-arginine of similar molecular weight. Reduction and alkylation of MBP diminished both the potency and efficacy of the molecule. Native MBP also stimulated histamine secretion from purified rat peritoneal mast cells in a manner characteristic of other polycations. These results emphasize the bidirectional nature of the basophil/mast cell-eosinophil regulatory axis.

Journal ArticleDOI
TL;DR: The relationship of two activation antigens, known to be the receptors for transferrin and interleukin 2, a T cell growth factor, is discussed with special reference to the roles of their ligands in supporting the growth of T cells
Abstract: Cell-surface antigens that are induced to appear on T cells activated by the lectin phytohemagglutinin-P (PHA) can be classified both on the basis of the kinetics of their appearance and on their growth-association properties. Seven distinct T cell activation antigens, defined by monoclonal antibodies, were classified as early, intermediate, or late antigens based on their temporal appearance relative to DNA synthesis. Four antigens, the transferrin receptor, the T cell activation antigen Tac, the 4F2 antigen, and the 49.9 antigen were early antigens, whereas the OKT10 antigen appeared at intermediate times and both HLA-DR and antigen 19.2 appeared late. The use of a dye, Hoechst 33342, which stains DNA stoichiometrically, allowed the simultaneous analysis of immunofluorescence and cell cycle position of individual cells. This analysis unexpectedly revealed that essentially all cells in the proliferative phase of the cell cycle expressed each of the four early-activation antigens. The correlation between expression of the four early-activation antigens and T cell proliferation suggests that these molecules are important for the growth of all T cells. The relationship of two of these activation antigens, known to be the receptors for transferrin and interleukin 2, a T cell growth factor, is discussed with special reference to the roles of their ligands in supporting the growth of T cells.

Journal ArticleDOI
TL;DR: The DC, a trace component of mouse spleen, is the principal cell type required for stimulation of the primary mixed leukocyte reaction (MLR), and likely represent the critical accessory cell required for the induction of lymphocyte responses.
Abstract: Clone 33D1 is a mouse-rat hybridoma that secretes a specific anti-dendritic cell (DC) monoclonal antibody (14). Because the antibody kills DC in the presence of rabbit complement, it can be used to study the functional consequences of selective DC depletion. Previous data on the cell specificity of 33D1 were first extended. By cytotoxicity (rabbit complement) and indirect immunofluorescence (biotin-avidin technique), 33D1 reacted with DC but not with macrophages nor other splenocytes. In contrast, the monoclonal antibody, F4/80 (15), reacted with macrophages but not DC. The functional assay evaluated in this paper was stimulation of the primary mixed leukocyte reaction (MLR). 33D1 antibody itself did not inhibit stimulation by enriched populations of DC. In the presence of complement, 33D1 killed DC and ablated stimulatory function. The effect of 33D1 and complement on MLR stimulation by heterogenous cell mixtures was then evaluated. Removal of DC from unfractionated spleen suspensions reduced stimulatory capacity 75-90 percent, comparable to that produced with specific anti-Ia antibody and complement. Stimulation of both proliferative and cytotoxic responses was reduced. DC depletion had similar effects on MLR generated across full strain differences, or across selected subregions (H2I, H-2K/D) of the major histocompatibility complex. To further compare the functional properties of spleen DC and macrophages, MLR stimulation by adherent and nonadherent fractions of spleen were tested separately. 62 +/- 8 percent of the total stimulatory capacity of spleen was in the plastic adherent population. Activity was ablated greater than 90 percent after elimination of DC. MLR stimulation by 24-h cultures of spleen adherent cells, which contained a three- to sixfold excess of Ia(+) macrophages, was also ablated when DC were removed. Stimulation by nonadherent spleen was more resistant, but was reduced 50-75 percent by 33D1 and complement. The function of spleen cells treated with 33D1 or anti-Ia antibody and complement was restored with a small inoculum of purified DC. The latter corresponded to 0.5 percent of total stimulator cells and were enriched by previously described techniques that did not require the 33D1 antibody. We conclude that the DC, a trace component of mouse spleen, is the principal cell type required for stimulation of the primary MLR. Because other cells are not immunogenic, but do express Ia and H-2 alloantigens, DC likely represent the critical accessory cell required for the induction of lymphocyte responses.

Journal ArticleDOI
TL;DR: It is reported here that FcR for human monomeric IgG1 can be induced on cells of myeloid origin cultured in the presence of IFN gamma for 8 h, and the factor in the supernatant fluid responsible for the induction as immune interferon is identified.
Abstract: We report here that FcR for human monomeric IgG1 can be induced on cells of myeloid origin cultured in the presence of IFN gamma for 8 h. Supernatant fluids from cultures of lymphocytes infected with a variety of viruses or cocultured with cell lines have the same FcR enhancing effect as IFN gamma. We identify the factor in the supernatant fluid responsible for the induction as immune interferon. Among the different types of IFN, only the gamma type (both purified and recombinant) specifically induces the appearance of FcR for monomeric IgG1 on normal and leukemic myeloid cells but not on cells of lymphoid origin. This effect is also evident on mature PMN. We show that the specificity and the affinity of the receptor induced on HL-60 promyelocytic cells, peripheral blood monocytes, and PMN are identical to those of the receptor spontaneously present on the same cells, except for PMN, which do not spontaneously express this type of receptor. The results of inhibition experiments performed with mouse IgG of and IgG3. These results suggest that the receptor present on human monocytes different isotypes indicate that the receptor can be inhibited by murine IgG2a or immature myeloid cells, selectively inducible by IFN gamma, has a specificity similar to the FcR1 described on mouse macrophages.

Journal ArticleDOI
TL;DR: The results suggested that the role of the L3T4 molecule is to increase the overall avidity of the reaction between T cells and Ag-presenting cells, which would increase the sensitivity with which the T cell reacted with Ag/MHC on Ag- presenting cells.
Abstract: We have examined the role of the murine homologue of Leu-3 T4, L3T4, in recognition of antigen in association with products of the major histocompatibility complex (Ag/MHC) by murine T cell hybridomas. A series of ovalbumin (OVA)/I-Ad-specific T cell hybridomas were ranked in their sensitivity to Ag/I by measuring their ability to respond to low doses of OVA, or their sensitivity to inhibition by anti-I-Ad antibodies. T cell hybridomas with low apparent avidity for OVA/I-Ad, i.e. that did not respond well to low concentrations of OVA and were easily inhibited by anti-I-Ad, were also easily inhibited by anti-L3T4 antibodies. The reverse was true for T cell hybridomas with apparent high avidity for Ag/MHC. We found that the presence of low doses of anti-L3T4 antibodies caused T cell hybridomas to respond less well to low doses of Ag, and to be more easily inhibited by anti-I-Ad antibodies. These results suggested that the role of the L3T4 molecule is to increase the overall avidity of the reaction between T cells and Ag-presenting cells. In support of this idea was the discovery of several L3T4- subclones of one of our L3T4+ T cell hybridomas, D0.11.10. The L3T4- subclones had the same amount of receptor for OVA/I-Ad as their L3T4+ parent, as detected by an anti-receptor monoclonal antibody. The L3T4- subclones, however, responded less well to low doses of OVA, and were more easily inhibited by anti-I-Ad antibodies than their L3T4/ parent. These results showed that the L3T4 molecule was not required for surface expression of, or functional activity of, the T cell receptor for Ag/MHC. The L3T4 molecule did, however, increase the sensitivity with which the T cell reacted with Ag/MHC on Ag-presenting cells.