scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Geophysical Research in 1994"


Journal ArticleDOI
TL;DR: In this article, a new sequential data assimilation method is proposed based on Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter.
Abstract: A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The unbounded error growth found in the extended Kalman filter, which is caused by an overly simplified closure in the error covariance equation, is completely eliminated. Open boundaries can be handled as long as the ocean model is well posed. Well-known numerical instabilities associated with the error covariance equation are avoided because storage and evolution of the error covariance matrix itself are not needed. The results are also better than what is provided by the extended Kalman filter since there is no closure problem and the quality of the forecast error statistics therefore improves. The method should be feasible also for more sophisticated primitive equation models. The computational load for reasonable accuracy is only a fraction of what is required for the extended Kalman filter and is given by the storage of, say, 100 model states for an ensemble size of 100 and thus CPU requirements of the order of the cost of 100 model integrations. The proposed method can therefore be used with realistic nonlinear ocean models on large domains on existing computers, and it is also well suited for parallel computers and clusters of workstations where each processor integrates a few members of the ensemble.

4,816 citations


Journal ArticleDOI
TL;DR: In this paper, a generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described.
Abstract: A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.

3,297 citations


Journal ArticleDOI
TL;DR: In this article, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index.
Abstract: After a brief review of magnetospheric and interplanetary phenomena for intervals with enhanced solar wind-magnetosphere interaction, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index. The associated storm/substorm relationship problem is also reviewed. Although the physics of this relationship does not seem to be fully understood at this time, basic and fairly well established mechanisms of this relationship are presented and discussed. Finally, toward the advancement of geomagnetic storm research, some recommendations are given concerning future improvements in monitoring existing geomagnetic indices as well as the solar wind near Earth.

1,963 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a state-variable constitutive formulation for the rate of earthquake production resulting from an applied stressing history, which was implemented using solutions for nucleation of unstable fault slip on faults with experimentally derived rate and state dependent fault properties.
Abstract: Seismicity is modeled as a sequence of earthquake nucleation events in which the distribution of initial conditions over the population of nucleation sources and stress- ing history control the timing of earthquakes. The model is implemented using solutions for nucleation of unstable fault slip on faults with experimentally derived rate- and state- dependent fault properties. This yields a general state-variable constitutive formulation for rate of earthquake production resulting from an applied stressing history. To illustrate and test the model some characteristics of seismicity following a stress step have been explored. It is proposed that various features of earthquake clustering arise from sensi- tivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and interprets aftershock parameters in terms of stress change and stressing rate. Earthquake data appear to support a model prediction that aftershock duration, defined as the time for rates to return to the back- ground seismicity rate, is proportional to mainshock recurrence time. Observed spatial and temporal clustering of earthquake pairs arises as a consequence of the spatial depen- dence of stress changes of the first event of the pair and stress-sensitive time-dependent nucleation. Applications of the constitutive formulation are not restricted to the simple stress step models investigated here. It may be applied to stressing histories of arbitrary complexity. The apparent success at modeling clustering phenomena suggests the possibil- ity of using the formulation to estimate short- to intermediate-term earthquake probabil- ities following occurrence of other earthquakes and for inversion of temporal variations of earthquake rates for changes in driving stress.

1,338 citations


Journal ArticleDOI
TL;DR: In the spring of 1988 an interagency consortium of Federal Land Managers and the Environmental Protection Agency initiated a national visibility and aerosol monitoring network to track spatial and temporal trends of visibility and visibility-reducing particles as discussed by the authors.
Abstract: In the spring of 1988 an interagency consortium of Federal Land Managers and the Environmental Protection Agency initiated a national visibility and aerosol monitoring network to track spatial and temporal trends of visibility and visibility-reducing particles. The monitoring network consists of 36 stations located mostly in the western United States. The major visibility-reducing aerosol species, sulfates, nitrates, organics, light-absorbing carbon, and wind-blown dust are monitored as well as light scattering and extinction. Sulfates and organics are responsible for most of the extinction at most locations throughout the United States, while at sites in southern California nitrates are dominant. In the eastern United States, sulfates contribute to about two thirds of the extinction. In almost all cases, extinction and the major aerosol types are highest in the summer and lowest during the winter months.

1,258 citations


Journal ArticleDOI
Abstract: Altimetric data from the TOPEX/POSEIDON mission will be used for studies of global ocean circulation and marine geophysics. However, it is first necessary to remove the ocean tides, which are aliased in the raw data. The tides are constrained by the two distinct types of information: the hydrodynamic equations which the tidal fields of elevations and velocities must satisfy, and direct observational data from tide gauges and satellite altimetry. Here we develop and apply a generalized inverse method, which allows us to combine rationally all of this information into global tidal fields best fitting both the data and the dynamics, in a least squares sense. The resulting inverse solution is a sum of the direct solution to the astronomically forced Laplace tidal equations and a linear combination of the representers for the data functionals. The representer functions (one for each datum) are determined by the dynamical equations, and by our prior estimates of the statistics or errors in these equations. Our major task is a direct numerical calculation of these representers. This task is computationally intensive, but well suited to massively parallel processing. By calculating the representers we reduce the full (infinite dimensional) problem to a relatively low-dimensional problem at the outset, allowing full control over the conditioning and hence the stability of the inverse solution. With the representers calculated we can easily update our model as additional TOPEX/POSEIDON data become available. As an initial illustration we invert harmonic constants from a set of 80 open-ocean tide gauges. We then present a practical scheme for direct inversion of TOPEX/POSEIDON crossover data. We apply this method to 38 cycles of geophysical data records (GDR) data, computing preliminary global estimates of the four principal tidal constituents, M(sub 2), S(sub 2), K(sub 1) and O(sub 1). The inverse solution yields tidal fields which are simultaneously smoother, and in better agreement with altimetric and ground truth data, than previously proposed tidal models. Relative to the 'default' tidal corrections provided with the TOPEX/POSEIDON GDR, the inverse solution reduces crossover difference variances significantly (approximately 20-30%), even though only a small number of free parameters (approximately equal to 1000) are actually fit to the crossover data.

1,249 citations


Journal ArticleDOI
TL;DR: In this article, the same inversion formalism was used to determine hypocenters and one-dimensional (1-D) velocity model parameters, including station corrections, as the first step in the 3D modeling process.
Abstract: The inverse problem of three-dimensional (3-D) local earthquake tomography is formulated as a linear approximation to a nonlinear function. Thus the solutions obtained and the reliability estimates depend on the initial reference model. Inappropriate models may result in artifacts of significant amplitude. Here, we advocate the application of the same inversion formalism to determine hypocenters and one-dimensional (1-D) velocity model parameters, including station corrections, as the first step in the 3-D modeling process. We call the resulting velocity model the minimum 1-D model. For test purposes, a synthetic data set based on the velocity structure of the San Andreas fault zone in central California was constructed. Two sets of 3-D tomographic P velocity results were calculated with identical travel time data and identical inversion parameters. One used an initial 1-D model selected from a priori knowledge of average crustal velocities, and the other used the minimum 1-D model. Where the data well resolve the structure, the 3-D image obtained with the minimum 1-D model is much closer to the true model than the one obtained with the a priori reference model. In zones of poor resolution, there are fewer artifacts in the 3-D image based on the minimum 1-D model. Although major characteristics of the 3-D velocity structure are present in both images, proper interpretation of the results obtained with the a priori 1-D model is seriously compromised by artifacts that distort the image and that go undetected by either resolution or covariance diagnostics.

919 citations


Journal ArticleDOI
TL;DR: In this article, a new solar Extreme Ultraviolet (EUV) flux model for aeronomic calulations is presented, which is based on the measured F74113 solar EUV reference spectrum.
Abstract: This paper presents a new solar Extreme Ultraviolet (EUV) flux model for aeronomic calulations (EUVAC), which is based on the measured F74113 solar EUV reference spectrum. The model provides fluxes in the 37 wavelength bins that are in widespread use. This paper also presents cross sections to be used with the EUVAC flux model to calculate photoionization rates. The flux scaling for solar activity is accomplished using a proxy-based on the F10.7 index and its 81-day average together with the measured solar flux variation from the EUVS instrument on the Atmosphere Explorer E satellite. This new model produces 50-575 A integrated EUV fluxes in good agreement with rocket observations. The solar cycle variation of the chromospheric fluxes agrees well with the measured variation of the Lyman alpha flux between 1982 and 1988. In addition, the theoretical photoelectron fluxes, calculated using the new EUV flux model, are in good agreement with the solar minimum photoelectron fluxes from the Atmosphere Explorer E satellite and also with the solar maximum photoelectron fluxes from the Dynamics Explorer satellite. Its relative simplicity coupled with its ability to reproduce the 50-575 A solar EUV flux as well as the measured photoelectron spectrum makes the model well suited for aeronomic applications. However, EUVAC is not designed to accurately predict the solar flux variability for numerous individual lines.

858 citations


Journal ArticleDOI
TL;DR: In this paper, a global three-dimensional model of the atmospheric mineral dust cycle is developed for the study of its impact on the radiative balance of the atmosphere, which includes four size classes of minearl dust, whose source distributions are based on the distributions of vegetation, soil texture and soil moisture.
Abstract: A global three-dimensional model of the atmospheric mineral dust cycle is developed for the study of its impact on the radiative balance of the atmosphere. The model includes four size classes of minearl dust, whose source distributions are based on the distributions of vegetation, soil texture and soil moisture. Uplift and deposition are parameterized using analyzed winds and rainfall statistics that resolve high-frequency events. Dust transport in the atmosphere is simulated with the tracer transport model of the Goddard Institute for Space Studies. The simulated seasonal variations of dust concentrations show general reasonable agreement with the observed distributions, as do the size distributions at several observing sites. The discrepancies between the simulated and the observed dust concentrations point to regions of significant land surface modification. Monthly distribution of aerosol optical depths are calculated from the distribution of dust particle sizes. The maximum optical depth due to dust is 0.4-0.5 in the seasonal mean. The main uncertainties, about a factor of 3-5, in calculating optical thicknesses arise from the crude resolution of soil particle sizes, from insufficient constraint by the total dust loading in the atmosphere, and from our ignorance about adhesion, agglomeration, uplift, and size distributions of fine dust particles (less than 1 micrometer).

838 citations


Journal ArticleDOI
TL;DR: In this article, an integrated geomagnetic polarity and stratigraphic time scale for the Triassic, Jurassic, and Cretaceous periods of the Mesozoic Era, with age estimates and uncertainty limits for stage boundaries, is presented.
Abstract: We present an integrated geomagnetic polarity and stratigraphic time scale for the Triassic, Jurassic, and Cretaceous periods of the Mesozoic Era, with age estimates and uncertainty limits for stage boundaries. The time scale uses a suite of 324 radiomenc dates, including high-resolution 40 Ar/ 39 Ar age estimates. This framework involves the observed ties between (1) radiometric dates, biozones, and stage boundaries, and (2) between biozones and magnetic reversals on the seafloor and in sediments. Interpolation techniques include maximum likelihood estimation, smoothing cubic spline fitting, and magnetochronology

838 citations


Journal ArticleDOI
TL;DR: In this paper, the initial development phase of North Atlantic Deep Water (NADW) production from the points where the dense inflows from Nordic seas cross the Greenland-Scotland Ridge to the point off south Greenland where the buildup of new production appears almost complete.
Abstract: Updating an earlier account by Dickson et al., (1990), this paper reviews the initial development phase of North Atlantic Deep Water (NADW) production from the points where the dense inflows from Nordic seas cross the Greenland-Scotland Ridge to the point off south Greenland where the buildup of new production appears almost complete. In particular, three long-term current meter arrays totaling 91 instruments and set at ∼160 km intervals south from the Denmark Strait sill are used to validate earlier short-term arrays by others and, in combination with these earlier arrays, to describe the downstream evolution of mean speed, depth and entrainment, the variability of the overflow current in space and time, and the likely contribution of the other three main constituents of NADW production at densities greater than σθ = 27.8. From the points of overflow (5.6 Sv) the transport within this range increases by entrainment and confluence with other contributory streams to around 13.3 Sv at Cape Farewell. While recirculating elements prevent us from determining the net southgoing transport, a NADW transport of this order appears consistent with recent estimates of net abyssal flow passing south through the North and South Atlantic.

Journal ArticleDOI
TL;DR: Water activities, densities, and refractive indices for solution droplets containing a single salt of either (NH{sub 4} ), (SO{sub 2} ), NH{sub 3} and NaNO{sub 5] are reported in this article.
Abstract: Water activities, densities, and refractive indices over extended concentration ranges at 25{degrees}C are reported for solution droplets containing a single salt of either (NH{sub 4}){sub 2}SO{sub 4}, NH{sub 4}HSO{sub 4}, (NH{sub 4}){sub 3}H(SO{sub 4}){sub 2}, Na{sub 2}SO{sub 4}, NaHSO{sub 4}, or NaNO{sub 3}, which are common constituents of atmospheric aerosols. The extensive data reported are obtained from experiments using the single-particle levitation technique recently developed for measuring the thermodynamic and optical properties of microdroplets. These data should find application in mathematical models predicting the dynamic behavior, visibility reduction, and radiative effects of atmospheric sulfate and nitrate aerosols. 32 refs., 13 figs., 3 tabs.

Journal ArticleDOI
TL;DR: In this paper, four numerical simulations have been performed, at equinox, using a coupled thermosphere-ionosphere model, to illustrate the response of the upper atmosphere to geomagnetic storms.
Abstract: Four numerical simulations have been performed, at equinox, using a coupled thermosphere-ionosphere model, to illustrate the response of the upper atmosphere to geomagnetic storms. The storms are characterized by an increase in magnetospheric energy input at high latitude for a 12-hour period; each storm commences at a different universal time (UT). The initial response at high latitude is that Joule heating raises the temperature of the upper thermosphere and ion drag drives high-velocity neutral winds. The heat source drives a global wind surge, from both polar regions, which propagates to low latitudes and into the opposite hemisphere. The surge has the character of a large-scale gravity wave with a phase speed of about 600 m/s. Behind the surge a global circulation of magnitude 100 m/s is established at middle latitudes, indicating that the wave and the onset of global circulation are manifestations of the same phenomena. A dominant feature of the response is the penetration of the surge into the opposite hemisphere where it drives poleward winds for a few hours. The global wind surge has a preference for the night sector and for the longitude of the magnetic pole and therefore depends on the UT start time of the storm. A second phase of the meridional circulation develops after the wave interaction but is also restricted, in this case by the buildup of zonal winds via the Coriolis interaction. Conservation of angular momentum may limit the buildup of zonal wind in extreme cases. The divergent wind field drives upwelling and composition change on both height and pressure surfaces. The composition bulge responds to both the background and the storm-induced horizontal winds; it does not simply rotate with Earth. During the storm the disturbance wind modulates the location of the bulge; during the recovery the background winds induce a diurnal variation in its position. Equatorward winds in sunlight produce positive ionospheric changes during the main driving phase of the storm. Negative ionospheric phases are caused by increases of molecular nitrogen in regions of sunlight, the strength of which depends on longitude and the local time of the sector during the storm input. Regions of positive phase in the ionosphere persist in the recovery period due to decreases in mean molecular mass in regions of previous downwelling. Ion density changes, expressed as a ratio of disturbed to quiet values, exhibit a diurnal variation that is driven by the location of the composition bulge; this variation explains the ac component of the local time variation of the observed negative storm phase.

Journal ArticleDOI
TL;DR: In this paper, the authors used the remote sensing of crop growth to estimate continental net primary productivity (NPP) as well as its seasonal and spatial variations, assuming a decomposition of NPP into independent parameters such as incident solar radiation, radiation absorption efficiency by canopies, and conversion efficiency of absorbed radiation into organic dry matter.
Abstract: Kumar and Monteith's (1981) model for the remote sensing of crop growth has been used to estimate continental net primary productivity (NPP) as well as its seasonal and spatial variations. The model assumes a decomposition of NPP into independent parameters such as incident solar radiation (S0), radiation absorption efficiency by canopies (ƒ), and conversion efficiency of absorbed radiation into organic dry matter (e). The precision on some of the input parameters has been improved, compared to previous uses of this model at a global scale: remote sensing data used to derive ƒ have been calibrated, corrected of some atmospheric effects, and filtered; e has been considered as biome-dependent and derived from literature data. The resulting global NPP (approximatively 60 GtC per year) is within the range of values given in the literature. However, mean NPP estimates per biome do not agree with the literature (in particular, the estimation for tropical rain forests NPP is much lower and for cultivations much higher than field estimates), which results in zonal and seasonal variations of continental NPP giving more weight to the temperate northern hemisphere than to the equatorial zone.

Journal ArticleDOI
TL;DR: In this article, the distribution and variations of atmospheric CO2 from 1981 to 1992 were determined by measuring CO2 mixing ratios in samples collected weekly at a cooperative global air sampling network.
Abstract: The distribution and variations of atmospheric CO2 from 1981 to 1992 were determined by measuring CO2 mixing ratios in samples collected weekly at a cooperative global air sampling network. The results constitute the most geographically extensive, carefully calibrated, internally consistent CO2 data set available. Analysis of the data reveals that the global CO2 growth rate has declined from a peak of approximately 2.5 ppm/yr in 1987-1988 to approximately 0.6 ppm/yr in 1992. In 1992 we find no increase in atmospheric CO2 from 30 deg to 90 deg N. Variations in fossil fuel CO2 emissions cannot explain this result. The north pole-south pole CO2 difference increased from approximately 3 ppm during 1981-1987 to approximately 4 ppm during 1988-1991. In 1992 the difference was again approximately 3 ppm. A two-dimensional model analysis of the data indicates that the low CO2 growth rate in 1992 is mainly due to an increase in the northern hemisphere CO2 sink from 3.9 Gt C/yr in 1991 to 5.0 Gt C/yr in 1992. The increase in the north pole-south pole CO2 difference appears to result from an increase in the southern hemisphere CO2 sink from approximately 0.5 to approximately 1.5 Gt C/yr.

Journal ArticleDOI
TL;DR: The fluvial system is a major concern in modeling landform evolution in response to tectonic deformation as discussed by the authors, and sediment routing through alluvial channels must account for supply from slope erosion, transport rates, abrasion, and sorting.
Abstract: The fluvial system is a major concern in modeling landform evolution in response to tectonic deformation. Three stream bed types (bedrock, coarse-bed alluvial, and fine-bed alluvial) differ in factors controlling their occurrence and evolution and in appropriate modeling approaches. Spatial and temporal transitions among bed types occur in response to changes in sediment characteristics and tectonic deformation. Erosion in bedrock channels depends upon the ability to scour or pluck bed material; this detachment capacity is often a power function of drainage area and gradient. Exposure of bedrock in channel beds, due to rapid downcutting or resistant rock, slows the response of headwater catchments to downstream baselevel changes. Sediment routing through alluvial channels must account for supply from slope erosion, transport rates, abrasion, and sorting. In regional landform modeling, implicit rate laws must be developed for sediment production from erosion of sub-grid-scale slopes and small channels.

Journal ArticleDOI
TL;DR: In this paper, the statistical properties of bursty bulk flow events (BBFs) in the inner plasma sheet (IPS) were analyzed using data from active magnetospheric particle tracer Explorer/Ion Release Module (AMPTE/IRM) and International Sun-Earth Explorer 2 (ISEE 2) satellites.
Abstract: Using a common methodology to analyze data from the Active Magnetospheric Particle Tracer Explorer/Ion Release Module (AMPTE/IRM) and International Sun-Earth Explorer 2 (ISEE 2) satellites we report on the statistical properties of bursty bulk flow events (BBFs) in the inner plasma sheet (IPS). A positive correlation between BBFs and the AE index suggests that BBFs are predominantly geomagnetically active time phenomena. Earthward BBFs are more frequent close to midnight and away from Earth, up to a distance of approximately 19 R(sub E). Tailward BBFs are very infrequent in the IRM data set and somewhat less infrequent in the ISEE 2 data set in the region of the satellites' spatial overlap, possibly due to the more active conditions prevailing during the ISEE 2 mission in that region. However, in both data sets the ratio of tailward to earthward BBFs increases with distance from Earth; more than 20% of all BBFs are anti-sunward tailward of X = -19 R(sub E) in the ISEE 2 data set. BBFs are responsible for 60-100% of the measured earthward transport of mass, energy and magnetic flux past the satellite in the regions of maximum occurrence rate, even though they last approximately 10-15% of the IPS observation time there. Thus BBFs represent the primary transport mechanism at those regions. The one-to-one correspondence between BBFs and substorm phase, as well as the relative contribution of BBFs to the total transport observed during substorms are questions that await further investigation based on multi instrument studies of individual events.

Journal ArticleDOI
TL;DR: The TOPEX/POSEIDON satellite as mentioned in this paper is the first space mission specifically designed and conducted for studying the circulation of the world's oceans and has been making observations of the global oceans with unprecedented accuracy since late September 1992.
Abstract: TOPEX/POSEIDON is the first space mission specifically designed and conducted for studying the circulation of the world's oceans. A state-of-the-art radar altimetry system is used to measure the precise height of sea level, from which information on the ocean circulation is obtained. The satellite, launched on August 10, 1992, has been making observations of the global oceans with unprecedented accuracy since late September 1992. To meet the stringent measurement accuracy required for ocean circulation studies, a number of innovative improvements have been made to the mission design, including the first dual-frequency space-borne radar altimeter capable of retrieving the ionospheric delay of the radar signal, a three-frequency microwave radiometer for retrieving the signal delay caused by the water vapor in the troposphere, an optimal model of the Earth's gravity field and multiple satellite tracking systems for precision orbit determination. Additionally, the satellite also carries two experimental instruments to demonstrate new technologies: a single-frequency solid-state altimeter for the technology of low-power, low-weight altimeter and a Global Positioning System receiver for continuous,precise satellite tracking. The performance of the mission's measurement system has been tested by numerous verification studies. The results indicate that the root-sum-square accuracy of a single-pass sea level measurement is 4.7 cm for the TOPEX system and 5.1 cm for the POSEIDON system; both are more than a factor of 2 better than the requirement of 13.7 cm. This global data set is being analyzed to improve understanding of the global ocean circulation as well as the ocean tides, geodesy, and geodynamics, and ocean wind and waves. The mission is designed to last for at least 3 years with a possible extension to 6 years. The multiyear global data set will go a long way toward understanding the ocean circulation and its variability in relation to climate change. A summary of the mission's systems and their performance as well as the mission's science team is presented.

Journal ArticleDOI
TL;DR: In this paper, the authors present a new compilation of estimates of modern rates of mechanical and chemical denudation for externally drained basins exceeding 5×105 km2 in area, based on sediment and solute load data selected in order to represent natural rates as far as possible.
Abstract: We present a new compilation of estimates of modern rates of mechanical and chemical denudation for externally drained basins exceeding 5×105 km2 in area. These estimates are based on sediment and solute load data selected in order to represent natural rates as far as possible. Chemical denudation rates have been calculated by deducting the nondenudational component of solute load. Mechanical denudation rates range from 1 mm kyr−1 for the St. Lawrence and Dnepr basins to 670 mm kyr−1 for the Brahmaputra basin. Chemical denudation rates vary from 1 mm kyr−1 (Kolyma, Niger, Nile and Rio Grande basins) to 27 mm kyr−1 (Chiang Jiang basin). The Kolyma basin has the lowest (4 mm kyr−1), and the Brahmaputra basin the highest, overall rate of denudation (688 mm kyr−1). Relationships between denudation rates and a range of morphometric, hydrologic, and climatic variables are investigated through correlation and regression analysis. Morphometric variables, such as mean local relief, are accurately calculated for large basins for the first time by using the National Geophysical Data Center 10-minute topographic database. Variables expressing basin relief characteristics and runoff are found to be most strongly associated with both mechanical and chemical denudation rates, with more than 60% of the variance in total denudation being accounted for by basin relief ratio and runoff. Basin area, runoff variability, and mean temperature, however, are only weakly associated with rates of denudation. Although direct comparisons cannot be made, it appears that rates of basin denudation derived from present-day mass flux estimates are not, overall, significantly different from estimates of long-term rates based on sediment volume and thermochronologic data. It therefore appears that the key factors identified as controlling denudation rates here are also applicable to the geological time spans relevant to the interaction between tectonic and denudational processes.

Journal ArticleDOI
TL;DR: In this paper, the authors obtained a 3D model of shear wave velocity heterogeneity of the Earth's mantle by inverting a large set of seismic data consisting of 27,000 long-period seismograms and 14,000 travel time observations.
Abstract: We obtain a three-dimensional (3D) model of shear wave velocity heterogeneity of the Earth's mantle by inverting a large set of seismic data consisting of 27,000 long-period seismograms and 14,000 travel time observations. About 60% of the data has been collected through the efforts of several research groups and used in earlier studies. The new data, which come from stations of different seismic networks including the Chinese Digital Seismographic Network (CDSN) and Geoscope, are extracted to provide sampling of mantle heterogeneity as uniform as possible. Because of the improved data coverage, we expand our model to degree 12 in spherical harmonics to describe horizontal variations, and to order of 13 in Chebyshev polynomials to describe radial variations. The resulting model shows a clear pattern of slower-than-average shear velocities at shallow depths underlying the major segments of the world-wide ridge system. These anomalies extend to depths greater than 300 km and in some cases appear to continue into the lower mantle. There is also a good correlation between the major continental shields and fast-velocity perturbations at depths extending to 300–400 km. Some of the continental “roots” extend to depths greater than in other studies. The pattern of heterogeneity is more complex in the midmantle, where the power spectrum is almost flat and has a relatively low amplitude; therefore the results in this depth range should be interpreted with caution. The pattern of the heterogeneity indicates a rapid change at a depth of about 1700 km. At this depth, the power spectrum of the model shifts from one which is almost flat in the midmantle to that dominated by degrees 2 and 3; this pattern then continues to the core-mantle boundary (CMB). The model is dominated by a few megastructures of velocity heterogeneity below the depth of 2000 km, in agreement with previous studies. Among these megastructures are the “Pangea Trough,” “Great African Plume,” and “Equatorial Pacific Plume Group.” The model predicts well the large-scale pattern of observed S, SS absolute travel times, and SS-S, ScS-S differential travel times. It also predicts well the waveforms of mantle wave and body wave. We compare our model with several other recently published models. There is generally a good agreement in the long-wavelength pattern of the models, especially at shallow depths and near the CMB. However, the amplitude as well as the pattern of shorter-wavelength features are in some cases quite different.

Journal ArticleDOI
Abstract: The National Center for Atmospheric Research (NCAR) community climate model (CCM) has historically made use of a moist adiabatic adjustment procedure for parameterizing the effects of moist convection. The most recent version of the NCAR CCM, CCM2, has abandoned this approach in favor of a stability-dependent mass-flux representation of moist convective processes. This scheme physically constrains the process of moist convection with the use of a simple bulk cloud model, which provides a basis for estimating convective-scale transports of heat, moisture, and other atmospheric constituents as well as the diabatic heating associated with condensation and the fallout of precipitation. This paper presents the formalism associated with this simple mass-flux approach and contrasts its behavior with the moist adiabatic adjustment procedure used in earlier models. The inclusion of this scheme significantly moistens and warms the model troposphere at all latitudes but particularly in the tropics. Additionally, the simulated magnitude, structure, and location of the large-scale mean circulations are generally improved. The sensitivity of the simulated climate to the formulation of the cloud model is also presented.

Journal ArticleDOI
TL;DR: In this paper, the authors used synthetic seismograms to estimate travel times for each of the multiple arrivals caused by velocity discontinuities near 400 and 660 km depth, where the data consist of S and ScS waves as well as multibounce phases SS, SSS and SSSS.
Abstract: Maps of lateral variation in shear velocity within the mantle beneath North and South America, their surrounding oceans, and parts of Africa and Eurasia are produced from inversion of travel times of horizontally polarized shear body waves. The data consist of S and ScS waves as well as multibounce phases SS, SSS and SSSS. Waves that bottom within the upper mantle are modeled using synthetic seismograms in order to estimate travel times for each of the multiple arrivals caused by velocity discontinuities near 400 and 660 km depth. The model consists of blocks with uniform slowness anomalies relative to a one-dimensional starting model and extends from the surface to the core-mantle boundary. The blocks have horizontal dimensions of roughly 275 by 275 km and vary in the vertical dimension from 75 to 150 km. The data are inverted using a simultaneous iterative reconstruction technique algorithm. The upper 400 km of the model is dominated by lateral variations that correspond to surface tectonic environments. Three shields on three separate continents have higher than average velocities down to between 320 and 400 km depth. Young tectonically active regions are very slow in the upper 250 km. The transition zone from 400 to 660 km depth is the most poorly resolved region. High velocity beneath western South America in the transition zone is probably associated with subducting slab. The transition zone velocity beneath the western and central part of North America also appears to be slightly faster than average. The lower mantle is dominated by large-scale sheets of higher than average velocity and more equidimensional regions of slow velocity. From South America to Siberia, sheet-like high-velocity anomalies are observed from 750 km depth to the core-mantle boundary. Another lower mantle high-velocity anomaly is seen beneath southern Eurasia. The high-velocity lower mantle anomalies seem to be associated with subduction during the last 150 Ma. Comparing the location of past subduction with the location of lower mantle anomalies, the identification of lower mantle anomalies with old subducted slabs suggests slow sinking of slabs in the lower mantle (about 1 to 2 cm/yr). If this interpretation is correct then high velocity in the deepest mantle off the west coast of South America through the western United States requires significant subduction from 120 to 150 Ma a few thousand kilometers off the coast of the Americas. The slowest deep region found in this study is at the base of the mantle beneath the eastern Atlantic Ocean and may be associated with hotspots in that region. Other hotspots do not appear to be associated with slow lower mantle velocity.

Journal ArticleDOI
TL;DR: In this article, an improved mixed layer model, based on second-moment closure of turbulence and suitable for application to oceanic and atmospheric mixed layers, is described and tested against observational data from different locations in the global oceans, including high latitudes and tropics.
Abstract: An improved mixed layer model, based on second-moment closure of turbulence and suitable for application to oceanic and atmospheric mixed layers, is described. The model is tested against observational data from different locations in the global oceans, including high latitudes and tropics. The model belongs to the Mellor-Yamada hierarchy but incorporates recent findings from research on large eddy simulations and second-moment closure. The modified expansion of Galperin, Kantha, Hassid and Rosati (1988) that leads to a much simpler and more robust quasi-equilibrium turbulence model is employed instead of the original Mellor and Yamada (1974) model. Findings from ongoing research at the National Center for Atmospheric Research on large eddy simulations of the atmospheric boundary layer are utilized to improve parameterizations of pressure covariance terms in the second-moment closure. Shortwave solar radiation penetration is given careful treatment in the model so that the model is applicable to investigations of biological and photochemical processes in the upper ocean. But by far the major improvement is in the inclusion of the shear instability-induced mixing in the strongly stratified region below the oceanic mixed layer that leads to a more realistic and reliable mixed layer model that is suitable for application to a variety of geophysical mixed layers and circulation problems. The model appears to predict the mixing in the upper ocean well on a variety of time scales, from event scale storm-induced deepening and diurnal scale variability to seasonal time scales. With proper attention to the heat and salt balances in the upper ocean, it should be possible to use it for simulations of interannual variability as well. While the model validation has been primarily against oceanic mixed layer data sets, it is believed that the improvements can be readily incorporated into a model of the atmospheric boundary layer as well.

Journal ArticleDOI
TL;DR: In this article, the authors presented a map of the coseismic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system.
Abstract: We present a map of the coseismic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system. We achieve results more accurate than previous space studies and similar in accuracy to those obtained by conventional field survey techniques. Data from the ERS 1 synthetic aperture radar instrument acquired in April, July, and August 1992 are used to generate a high-resolution, wide area map of the displacements. The data represent the motion in the direction of the radar line of sight to centimeter level precision of each 30-m resolution element in a 113 km by 90 km image. Our coseismic displacement contour map gives a lobed pattern consistent with theoretical models of the displacement field from the earthquake. Fine structure observed as displacement tiling in regions several kilometers from the fault appears to be the result of local surface fracturing. Comparison of these data with Global Positioning System and electronic distance measurement survey data yield a correlation of 0.96; thus the radar measurements are a means to extend the point measurements acquired by traditional techniques to an area map format. The technique we use is (1) more automatic, (2) more precise, and (3) better validated than previous similar applications of differential radar interferometry. Since we require only remotely sensed satellite data with no additional requirements for ancillary information, the technique is well suited for global seismic monitoring and analysis.

Journal ArticleDOI
TL;DR: In this paper, the authors study both the geodynamical and geochemical aspects of this hypothesis in two-dimensional numerical convection models, in which plate motion is imposed by a velocity boundary condition.
Abstract: Subducted oceanic crust, transformed into dense mineral assemblages at high pressure, may gravitationally segregate at the bottom of the convecting mantle, for example, the D″ layer. Here it could be stored for a long enough time to develop an “enriched” isotopic signature, before it is recycled in mantle plumes and hence control the geochemical character of hot-spot basalts. We study both the geodynamical and geochemical aspects of this hypothesis in two-dimensional numerical convection models, in which plate motion is imposed by a velocity boundary condition. About 250,000 tracer particles are used to identify the basalt fraction in the oceanic crustmantle system. High-, average-, and low-tracer densities indicate basalt or eclogite, peridotite, and harzburgite, respectively. The tracers are negatively buoyant to account for the density differences between the rock types. At surface divergence zones, crust formation is simulated by extracting tracers and transferring them into a thin layer at the surface. The tracers carry a certain amount of the relevant nuclides of the U-Pb and Sm-Nd systems, which are fractionated between the basalt tracers and a second species of residue tracers during crust formation. Using reasonable parameter values, we find that of the order of 1/6 of the subducted crust accumulates in pools at the bottom, which reside underneath thermal plumes. After 3.6 Ga, the [207Pb]/[204Pb], [206Pb]/[204Pb], and [143Nd]/[ 144Nd] ratios in various parts of the model cover the observed HIMU-MORB range. A systematic study of the influence of control parameters on the results indicates that the amount of segregation and the diversity of isotope ratios (1) increases strongly with Rρ, the ratio of chemical to thermal buoyancy; (2) decreases moderately with the Rayleigh number Ra, where Ra = 106 is the highest value that we employed; (3) increases strongly with the degree of temperature dependence of the viscosity; and (4) is not very sensitive to the partitioning between internal and bottom heating. The largest uncertainty in applying our model results to the Earth lies in the lack of accurate density data for conditions at the core-mantle boundary. We conclude that, if our density estimates are correct, segregation and reentrainment of subducted crust is of fundamental importance for the dynamics and chemistry of mantle plumes.

Journal ArticleDOI
TL;DR: In this paper, the authors reevaluate the magnitude and age variation of the discrepancy using a global heat flow data set substantially larger than in earlier studies, and the GDHI (Global Depth and Heat Flow) model that better predicts the heat flow.
Abstract: A significant discrepancy exists between the heat flow measured at the seafloor and the higher values predicted by thermal models of the cooling lithosphere. This discrepancy is generally interpreted as indicating that the upper oceanic crust is cooled significantly by hydrothermal circulation. The magnitude of this heat flow discrepancy is the primary datum used to estimate the volume of hydrothermal flow, and the variation in the discrepancy with lithospheric age is the primary constraint on how the hydrothermal flux is divided between near-ridge and off-ridge environments. The resulting estimates are important for investigation of both the thermal structure of the lithosphere and the chemistry of the oceans. We reevaluate the magnitude and age variation of the discrepancy using a global heat flow data set substantially larger than in earlier studies, and the GDHI (Global Depth and Heat Flow) model that better predicts the heat flow. We estimate that of the predicted global oceanic heat flux of 32 x 10(exp 12) W, 34% (11 x 10(exp 12) W) occurs by hydrothermal flow. Approximately 30% of the hydrothermal heat flux occurs in crust younger than 1 Ma, so the majority of this flux is off-ridge. These hydrothermal heat flux estimates are upper bounds, because heat flow measurements require sediment at the site and so are made preferentially at topographic lows, where heat flow may be depressed. Because the water temperature for the near-ridge flow exceeds that for the off-ridge flow, the near-ridge water flow will be even a smaller fraction of the total water flow. As a result, in estimating fluxes from geochemical data, use of the high water temperatures appropriate for the ridge axis may significantly overestimate the heat flux for an assumed water flux or underestimate the water flux for an assumed heat flux. Our data also permit improved estimates of the 'sealing' age, defined as the age where the observed heat flow approximately equals that predicted, suggesting that hydrothermal heat transfer has largely ceased. Although earlier studies suggested major differences in sealing ages for different ocean basins, we find that the sealing ages for the Atlantic, Pacific, and Indian oceans are similar and consistent with the sealing age for the entire data set, 65 +/- 10 Ma. The previous inference of a young (approximately 20 Ma) sealing age for the Pacific appears to have biased downward several previous estimates of the global hydrothermal flux. The heat flow data also provide indirect evidence for the mechanism by which the hydrothermal heat flux becomes small, which has often been ascribed to isolation of the igneous crust from seawater due to the hydraulic conductivity of the intervening sediment. We find, however, that even the least sedimented sites show the systematic increase of the ratio of observed to predicted heat flow with age, although the more sedimented sites have a younger sealing age. Moreover, the heat flow discrepancy persists at heavily sedimented sites until approximately 50 Ma. It thus appears that approximately 100-200 m of sediment is neither necessary nor sufficient to stop hydrothermal heat transfer. We therefore conclude that the age of the crust is the primary control on the fraction of heat transported by hydrothermal flow and that sediment thickness has a lesser effect. This inference is consistent with models in which hydrothermal flow decreases with age due to reduced crustal porosity and hence permeability.

Journal ArticleDOI
TL;DR: A detailed three-dimensional P wave velocity structure of the Japan subduction zone to 500-km depth by inverting local, regional, and teleseismic data simultaneously was determined in this paper.
Abstract: We have determined a detailed three-dimensional P wave velocity structure of the Japan subduction zone to 500-km depth by inverting local, regional, and teleseismic data simultaneously. We used 45,318 P wave arrivals from 1241 shallow and deep earthquakes which occurred in and around the Japan Islands. The arrival times are recorded by the Japan University Seismic Network which covers the entire Japan Islands densely and uniformly. We also used 4211 travel time residuals from 100 teleseismic events which are read from seismograms recorded by seismic stations in northeastern Japan. In comparison with the previous results obtained from only local and regional events, the present result for the area around the lower plate boundary and the mantle below the plate is determined more reliably because of the addition of 7035 data from 100 teleseismic events and 41 very deep earthquakes. In the crust and uppermost mantle, low-velocity zones are clearly visible beneath active volcanoes. In the mantle wedge the low-velocity zones generally parallel with the slab and exist continuously to a depth of about 200-km, which is consistent with the petrological, geochemical and geodynamic studies. We consider that the existence of volcanism-related low-velocity anomalies in the mantle wedge is a general Seismological characteristic of subduction zones, in light of all the available tomographic results for many subduction zones in the world. The Pacific slab beneath Japan is imaged more clearly than in previous studies as a high-velocity zone with a thickness of 80–90 km and a P wave velocity 4–6% higher than the normal mantle. Lower velocity anomalies are found in the mantle below the slab.

Journal ArticleDOI
TL;DR: Methane was measured in air samples collected approximately weekly from a globally distributed network of sites from 1983 to 1992 as mentioned in this paper, where sites range in latitude from 90°S to 82°N. The estimated precision of the measurements is ± 0.2%.
Abstract: Methane was measured in air samples collected approximately weekly from a globally distributed network of sites from 1983 to 1992. Sites range in latitude from 90°S to 82°N. All samples were analyzed by gas chromatography, with flame ionization detection at the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory in Boulder, Colorado, and the measurements were referenced against a single calibration scale. The estimated precision of the measurements is ±0.2%. Samples which had clear sampling or analytical errors, or which appeared to be contaminated by local CH4 sources, were identified and excluded from the data analysis. The data reveal a strong north-south gradient in methane with an annual mean difference of about 140 ppb between the northernmost and southernmost sampling sites. Methane time series from the high southern latitude sites have a relatively simple seasonal cycle with a minimum during late summer-early fall, almost certainly dominated by the seasonality in its photochemical destruction. Typical seasonal cycle amplitudes there are about 30 ppb. Seasonal cycles at sites in the northern hemisphere are complex when compared to sites in the southern hemisphere due to the interaction among CH4 sources and sinks, and atmospheric transport. Seasonal cycle amplitudes in the high north are about twice those observed in the high southern hemisphere. Annual mean methane mixing ratios were ∼1% lower at 3397 m than at sea level on the island of Hawaii. Trends were determined at each site in the network and globally. The average increase in the globally averaged methane mixing ratio over the period of these measurements is (11.1±0.2) ppb yr−1. Globally, the growth rate for methane decreased from approximately 13.5 ppb yr−1 in 1983 to about 9.3 ppb yr−1 in 1991. The growth rate of methane in the northern hemisphere during 1992 was near zero. Various possibilities for the long-term, slow decrease in the methane growth rate over the last decade and the rapid change in growth rate in the northern hemisphere in 1992 are given. The most likely explanation is a change in a methane source influenced directly by human activities, such as fossil fuel production.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the Clapeyron slopes of the perovskite-forming reactions of the spinel-forming reaction and concluded that the bulk of the evidence indicates a greater Clapeyreron slope magnitude for the 410 than for the 660.
Abstract: The depths, widths, and magnitudes of the 410-km and 660-km seismic discontinuities are largely consistent with an isochemical phase change origin, as is the observation that the topography on these discontinuities is negatively correlated and significantly smaller than predicted for chemical changes. While most thermodynanlic studies of the relevant phase changes predict greater topography on the 410 than the 660, recent seismic studies suggest greater topography on the 660. The seismic results are consistent with some recent thermochemical studies which suggest that the Clapeyron slopes of the perovskite-forming reactions exceed in magnitude those of the spinel-forming reactions; however, we have reexamined the relevant Clapeyron slopes in light of other, more recent, experimental studies as well as the requirements of internal thermodynamic consistency. We conclude that the bulk of the evidence indicates a greater Clapeyron slope magnitude for the 410 than for the 660. Thus the recent seismic results are unexpected. One explanation might be that lateral temperature variations near 660 km depth exceed those near 410, consistent with a model of the 660 as a thermal boundary layer. An alternate interpretation, which requires neither a thermal boundary nor metastable olivine, is that the 410 does possess greater topography but is simply less visible seismically than the 660. This latter idea, and recent short-period observations of P'410P' seismic phases in conjunction with an elevated 660, is consistent with thermodynamic modeling of subduction zones illustrating the extreme broadening of the olivine n+P transition in cold slab interiors and, conversely, its sharpening in regions of high temperature.

Journal ArticleDOI
TL;DR: The global distribution pattern of coccolithophrid blooms was mapped in order to ascertain the prevalence of these blooms in the world oceans and to estimate their worldwide production of CaCO3 and dimethyl sulfide (DMS) as mentioned in this paper.
Abstract: The global distribution pattern of coccolithophrid blooms was mapped in order to ascertain the prevalence of these blooms in the world's oceans and to estimate their worldwide production of CaCO3 and dimethyl sulfide (DMS). Mapping was accomplished by classifying pixels of 5-day global composites of coastal zone color scanner imagery into bloom and nonbloom classes using a supervised, multispectral classification scheme. Surface waters with the spectral signature of coccolithophorid blooms annually covered an average of 1.4 x 10(exp 6) sq km in the world oceans from 1979 to 1985, with the subpolar latitudes accounting for 71% of this surface area. Classified blooms were most extensive in the Subartic North Atlantic. Large expanses of the bloom signal were also detected in the North Pacific, on the Argentine shelf and slope, and in numerous lower latitude marginal seas and shelf regions. The greatest spatial extent of classified blooms in subpolar oceanic regions occurred in the months from summer to early autumn, while those in lower latitude marginal seas occurred in midwinter to early spring. Though the classification scheme was effcient in separating bloom and nonbloom classes during test simulations, and biogeographical literature generally confirms the resulting distribution pattern of blooms in the subpolar regions, the cause of the bloom signal is equivocal in some geographic areas, particularly on shelf regions at lower latitudes. Standing stock estimates suggest that the presumed Emiliania huxleyi blooms act as a significant source of calcite carbon and DMS sulfur on a regional scale. On a global scale, however, the satellite-detected coccolithophorid blooms are estimated to play only a minor role in the annual production of these two compounds and their flux from the surface mixed layer.