scispace - formally typeset
Journal ArticleDOI

Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network

TLDR
In this article, the distribution and variations of atmospheric CO2 from 1981 to 1992 were determined by measuring CO2 mixing ratios in samples collected weekly at a cooperative global air sampling network.
Abstract
The distribution and variations of atmospheric CO2 from 1981 to 1992 were determined by measuring CO2 mixing ratios in samples collected weekly at a cooperative global air sampling network. The results constitute the most geographically extensive, carefully calibrated, internally consistent CO2 data set available. Analysis of the data reveals that the global CO2 growth rate has declined from a peak of approximately 2.5 ppm/yr in 1987-1988 to approximately 0.6 ppm/yr in 1992. In 1992 we find no increase in atmospheric CO2 from 30 deg to 90 deg N. Variations in fossil fuel CO2 emissions cannot explain this result. The north pole-south pole CO2 difference increased from approximately 3 ppm during 1981-1987 to approximately 4 ppm during 1988-1991. In 1992 the difference was again approximately 3 ppm. A two-dimensional model analysis of the data indicates that the low CO2 growth rate in 1992 is mainly due to an increase in the northern hemisphere CO2 sink from 3.9 Gt C/yr in 1991 to 5.0 Gt C/yr in 1992. The increase in the north pole-south pole CO2 difference appears to result from an increase in the southern hemisphere CO2 sink from approximately 0.5 to approximately 1.5 Gt C/yr.

read more

Citations
More filters
Book ChapterDOI

Carbon and Other Biogeochemical Cycles

TL;DR: For base year 2010, anthropogenic activities created ~210 (190 to 230) TgN of reactive nitrogen Nr from N2 as discussed by the authors, which is at least 2 times larger than the rate of natural terrestrial creation of ~58 Tg N (50 to 100 Tg nr yr−1) (Table 6.9, Section 1a).
Journal ArticleDOI

Trends in the sources and sinks of carbon dioxide

TL;DR: In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO 2 by the carbon sinks in response to climate change and variability as mentioned in this paper.
Journal ArticleDOI

Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO).

TL;DR: It is completely unclear how important microbial diversity is for the control of trace gas flux at the ecosystem level, and different microbial communities may be part of the reason for differences in trace gas metabolism, e.g., effects of nitrogen fertilizers on CH4 uptake by soil; decrease of CH4 production with decreasing temperature.
References
More filters
Book

Data Reduction and Error Analysis for the Physical Sciences

TL;DR: In this paper, Monte Carlo techniques are used to fit dependent and independent variables least squares fit to a polynomial least-squares fit to an arbitrary function fitting composite peaks direct application of the maximum likelihood.
Journal ArticleDOI

Data Reduction and Error Analysis for the Physical Sciences.

TL;DR: Numerical methods matrices graphs and tables histograms and graphs computer routines in Pascal and Monte Carlo techniques dependent and independent variables least-squares fit to a polynomial least-square fit to an arbitrary function fitting composite peaks direct application of the maximum likelihood.
Journal ArticleDOI

Terrestrial ecosystem production: A process model based on global satellite and surface data

TL;DR: In this paper, the authors present a modeling approach aimed at seasonal resolution of global climatic and edaphic controls on patterns of terrestrial ecosystem production and soil microbial respiration using satellite imagery (Advanced Very High Resolution Radiometer and International Satellite Cloud Climatology Project solar radiation), along with historical climate (monthly temperature and precipitation) and soil attributes (texture, C and N contents) from global (1°) data sets as model inputs.
Journal ArticleDOI

Observational contrains on the global atmospheric co2 budget.

TL;DR: The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2, and a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.
Journal ArticleDOI

Three‐dimensional model synthesis of the global methane cycle

TL;DR: In this article, the authors used a tracer transport model to simulate the signatures of the major sources and sinks of atmospheric methane in a three-dimensional HO field every 5 days taken from Spivakovsky et al. (1990a, b).
Related Papers (5)