scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Hematology & Oncology in 2013"


Journal ArticleDOI
Xinyuan Li1, Pu Fang1, Jietang Mai1, Eric T. Choi1, Hong Tian Wang1, Xiaofeng Yang1 
TL;DR: Recent understanding of how mitochondria generate and regulate the production ofmtROS and the function of mtROS both in physiological and pathological conditions are updated and newly developed methods to probe or scavenge mtR OS are described.
Abstract: There are multiple sources of reactive oxygen species (ROS) in the cell. As a major site of ROS production, mitochondria have drawn considerable interest because it was recently discovered that mitochondrial ROS (mtROS) directly stimulate the production of proinflammatory cytokines and pathological conditions as diverse as malignancies, autoimmune diseases, and cardiovascular diseases all share common phenotype of increased mtROS production above basal levels. Several excellent reviews on this topic have been published, but ever-changing new discoveries mandated a more up-to-date and comprehensive review on this topic. Therefore, we update recent understanding of how mitochondria generate and regulate the production of mtROS and the function of mtROS both in physiological and pathological conditions. In addition, we describe newly developed methods to probe or scavenge mtROS and compare these methods in detail. Thorough understanding of this topic and the application of mtROS-targeting drugs in the research is significant towards development of better therapies to combat inflammatory diseases and inflammatory malignancies.

623 citations


Journal ArticleDOI
TL;DR: Recent progress on the mechanisms and functions of lncRNAs in cancer are summarized, especially focusing on the oncogenic and tumor suppressive roles of the newly identified lnc RNAs, and the pathways these novel molecules might be involved in.
Abstract: Emerging evidence showed that long non-coding RNAs (lncRNAs) play important roles in a wide range of biological processes and dysregulated lncRNAs are involved in many complex human diseases, including cancer. Although a few lncRNAs’ functions in cancer have been characterized, the detailed regulatory mechanisms of majority of lncRNAs in cancer initiation and progression remain largely unknown. In this review, we summarized recent progress on the mechanisms and functions of lncRNAs in cancer, especially focusing on the oncogenic and tumor suppressive roles of the newly identified lncRNAs, and the pathways these novel molecules might be involved in. Their potentials as biomarkers for diagnosis and prognosis in cancer are also discussed in this paper.

382 citations


Journal ArticleDOI
TL;DR: This review critically examines the current evidence for genotyping the corresponding single nucleotide polymorphisms (SNPs) to predict response to mAbs in patients with cancer.
Abstract: Antibody-dependent cellular cytotoxicity (ADCC) is a major mechanism of action of therapeutic monoclonal antibodies (mAbs) such as cetuximab, rituximab and trastuzumab. Fc gamma receptors (FcgR) on human white blood cells are an integral part of the ADCC pathway. Differential response to therapeutic mAbs has been reported to correlate with specific polymorphisms in two of these genes: FCGR2A (H131R) and FCGR3A (V158F). These polymorphisms are associated with differential affinity of the receptors for mAbs. This review critically examines the current evidence for genotyping the corresponding single nucleotide polymorphisms (SNPs) to predict response to mAbs in patients with cancer.

368 citations


Journal ArticleDOI
TL;DR: A new paradigm that ECs are conditional innate immune cells is proposed, which provides a novel insight into the functions of ECs in inflammatory/immune pathologies.
Abstract: Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.

307 citations


Journal ArticleDOI
TL;DR: The implication of miR-125 family in disease suppression and promotion, focusing on carcinoma and host immune responses is summarized, and the potential of this miRNA family as promising biomarkers and therapeutic targets for different diseases in future is discussed.
Abstract: MicroRNAs (miRNAs) are emerging as a novel class of non-coding RNA molecules that regulate gene expression at a post-transcriptional level. More than 1000 miRNAs have been identified in human cells to date, and they are reported to play important roles in normal cell homeostasis, cell metastasis and disease pathogensis and progression. MiR-125, which is a highly conserved miRNA throughout diverse species from nematode to humans, consists of three homologs hsa-miR-125a, hsa-miR-125b-1 and hsa-miR-125-2. Members of this family have been validated to be down-regulated, exhibiting its disease-suppressing properties in many different types of diseases, while they also have disease-promoting functions in certain contexts. MiR-125 targets a number of genes such as transcription factors, matrix-metalloprotease, members of Bcl-2 family and others, aberrance of which may lead to abnormal proliferation, metastasis and invasion of cells, even carcinomas. Furthermore, miR-125 plays a crucial role in immunological host defense, especially in response to bacterial or viral infections. In this review, we summarize the implication of miR-125 family in disease suppression and promotion, focusing on carcinoma and host immune responses. We also discussed the potential of this miRNA family as promising biomarkers and therapeutic targets for different diseases in future.

300 citations


Journal ArticleDOI
TL;DR: This review summarized new MEK inhibitors in clinical development, including pimasertib, refametinib, PD-0325901, TAK733, MEK162, RO5126766, WX-554, RO4987655, GDC-0973 (XL518), and AZD8330, and summarized new MAP kinase signaling pathways involving 7 MEK enzymes.
Abstract: Four distinct MAP kinase signaling pathways involving 7 MEK enzymes have been identified. MEK1 and MEK2 are the prototype members of MEK family proteins. Several MEK inhibitors are in clinical trials. Trametinib is being evaluated by FDA for the treatment of metastatic melanoma with BRAF V600 mutation. Selumetinib has been studied in combination with docetaxel in phase II randomized trial in previously treated patients with advanced lung cancer. Selumetinib group had better response rate and progression-free survival. This review also summarized new MEK inhibitors in clinical development, including pimasertib, refametinib, PD-0325901, TAK733, MEK162 (ARRY 438162), RO5126766, WX-554, RO4987655 (CH4987655), GDC-0973 (XL518), and AZD8330.

242 citations


Journal ArticleDOI
TL;DR: The aim of this review is to summarize the PD-1 and PD-L1 biological functions and their alterative expression in hematological malignancies.
Abstract: T-cell activation and dysfunction relies on direct and modulated receptors. Based on their functional outcome, co-signaling molecules can be divided as co-stimulators and co-inhibitors, which positively and negatively control the priming, growth, differentiation and functional maturation of a T-cell response. We are beginning to understand the power of co-inhibitors in the context of lymphocyte homeostasis and the pathogenesis of leukemia, which involves several newly described co-inhibitory pathways, including the programmed death-1 (PD-1) and PD-1 ligand (PD-L1) pathway. The aim of this review is to summarize the PD-1 and PD-L1 biological functions and their alterative expression in hematological malignancies. The role of PD-1 and PD-L1 in T-cell immune suppression and the potential for immunotherapy via blocking PD-1 and PD-L1 in hematological malignancies are also reviewed.

241 citations


Journal ArticleDOI
TL;DR: The major molecules of PI3K signaling pathway are summarized, and the preclinical models and clinical trials of potent small-moleculePI3K inhibitors are discussed.
Abstract: Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate diverse cellular processes including proliferation, adhesion, survival, and motility. Dysregulated PI3K pathway signaling occurs in one-third of human tumors. Aberrantly activated PI3K signaling also confers sensitivity and resistance to conventional therapies. PI3K has been recognized as an attractive molecular target for novel anti-cancer molecules. In the last few years, several classes of potent and selective small molecule PI3K inhibitors have been developed, and at least fifteen compounds have progressed into clinical trials as new anticancer drugs. Among these, idelalisib has advanced to phase III trials in patients with advanced indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. In this review, we summarized the major molecules of PI3K signaling pathway, and discussed the preclinical models and clinical trials of potent small-molecule PI3K inhibitors.

219 citations


Journal ArticleDOI
TL;DR: Ibrutinib, a novel first-in-human BTK-inhibitor, has demonstrated clinical effectiveness and tolerability in early clinical trials and has progressed into phase III trials, but additional research is necessary to identify the optimal dosing schedule, as well as patients most likely to benefit from BTK inhibition.
Abstract: Small molecule inhibitors targeting dysregulated pathways (RAS/RAF/MEK, PI3K/AKT/mTOR, JAK/STAT) have significantly improved clinical outcomes in cancer patients. Recently Bruton’s tyrosine kinase (BTK), a crucial terminal kinase enzyme in the B-cell antigen receptor (BCR) signaling pathway, has emerged as an attractive target for therapeutic intervention in human malignancies and autoimmune disorders. Ibrutinib, a novel first-in-human BTK-inhibitor, has demonstrated clinical effectiveness and tolerability in early clinical trials and has progressed into phase III trials. However, additional research is necessary to identify the optimal dosing schedule, as well as patients most likely to benefit from BTK inhibition. This review summarizes preclinical and clinical development of ibrutinib and other novel BTK inhibitors (GDC-0834, CGI-560, CGI-1746, HM-71224, CC-292, and ONO-4059, CNX-774, LFM-A13) in the treatment of B-cell malignancies and autoimmune disorders.

204 citations


Journal ArticleDOI
TL;DR: This review summarized advances in preclinical and clinical development of inhibitors targeting STAT3 and STAT5, including peptidomimetics, small molecule inhibitors and oligonucleotides.
Abstract: Signal Transducer and Activator of Transcription (STAT) proteins are a family of cytoplasmic transcription factors consisting of 7 members, STAT1 to STAT6, including STAT5a and STAT5b. STAT proteins are thought to be ideal targets for anti-cancer therapy since cancer cells are more dependent on the STAT activity than their normal counterparts. Inhibitors targeting STAT3 and STAT5 have been developed. These included peptidomimetics, small molecule inhibitors and oligonucleotides. This review summarized advances in preclinical and clinical development of these compounds.

166 citations


Journal ArticleDOI
TL;DR: Investigating the role of Hh signaling in erlotinib resistance of TGF-β1-induced NSCLC cells that are reminiscent of EMT cells demonstrates that Hh pathway, through EMT-induction, leads to reduced sensitivity to EGFR-TKIs in NSCLCs.
Abstract: Background: Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) benefit Non-small cell lung cancer (NSCLC) patients, and an EGFR-TKIi erlotinib, is approved for patients with recurrent NSCLC. However, resistance to erlotinib is a major clinical problem. Earlier we have demonstrated the role of Hedgehog (Hh) signaling in Epithelial-to-Mesenchymal transition (EMT) of NSCLC cells, leading to increased proliferation and invasion. Here, we investigated the role of Hh signaling in erlotinib resistance of TGF-β1-induced NSCLC cells that are reminiscent of EMT cells. Methods: Hh signaling was inhibited by specific siRNA and by GDC-0449, a small molecule antagonist of G protein coupled receptor smoothened in the Hh pathway. Not all NSCLC patients are likely to benefit from EGFR-TKIs and, therefore, cisplatin was used to further demonstrate a role of inhibition of Hh signaling in sensitization of resistant EMT cells. Specific pre- and anti-miRNA preparations were used to study the mechanistic involvement of miRNAs in drug resistance mechanism. Results: siRNA-mediated inhibition as well as pharmacological inhibition of Hh signaling abrogated resistance of NSCLC cells to erlotinib and cisplatin. It also resulted in re-sensitization of TGF-β1-induced A549 (A549M) cells as well the mesenchymal phenotypic H1299 cells to erlotinib and cisplatin treatment with concomitant up-regulation of cancer stem cell (CSC) markers (Sox2, Nanog and EpCAM) and down-regulation of miR-200 and let-7 family miRNAs. Ectopic up-regulation of miRNAs, especially miR-200b and let-7c, significantly diminished the erlotinib resistance of A549M cells. Inhibition of Hh signaling by GDC-0449 in EMT cells resulted in the attenuation of CSC markers and up-regulation of miR-200b and let-7c, leading to sensitization of EMT cells to drug treatment, thus, confirming a connection between Hh signaling, miRNAs and drug resistance. Conclusions: We demonstrate that Hh pathway, through EMT-induction, leads to reduced sensitivity to EGFR-TKIs in NSCLCs. Therefore, targeting Hh pathway may lead to the reversal of EMT phenotype and improve the therapeutic efficacy of EGFR-TKIs in NSCLC patients.

Journal ArticleDOI
TL;DR: The recent achievements in p53 research using small molecules in hematological malignancies are presented and how p53 tumor suppressor protein holds promise as a drug target for recent and future novel therapies in these diseases are discussed.
Abstract: p53 is a powerful tumor suppressor and is an attractive cancer therapeutic target. A breakthrough in cancer research came from the discovery of the drugs which are capable of reactivating p53 function. Most anti-cancer agents, from traditional chemo- and radiation therapies to more recently developed non-peptide small molecules exert their effects by enhancing the anti-proliferative activities of p53. Small molecules such as nutlin, RITA, and PRIMA-1 that can activate p53 have shown their anti-tumor effects in different types of hematological malignancies. Importantly, nutlin and PRIMA-1 have successfully reached the stage of phase I/II clinical trials in at least one type of hematological cancer. Thus, the pharmacological activation of p53 by these small molecules has a major clinical impact on prognostic use and targeted drug design. In the current review, we present the recent achievements in p53 research using small molecules in hematological malignancies. Anticancer activity of different classes of compounds targeting the p53 signaling pathway and their mechanism of action are discussed. In addition, we discuss how p53 tumor suppressor protein holds promise as a drug target for recent and future novel therapies in these diseases.

Journal ArticleDOI
TL;DR: It is indicated that tumor-promoting Col-1 up-regulates the expression of HOTAIR in NSCLC cells, a new family of regulatory RNAs that modulate fundamental cellular processes via diverse mechanisms.
Abstract: Background The tumor microenvironment is a crucial determinant in tumor progression. Interstitial extracellular matrix (ECM), such as type I collagen (Col-1), is aberrantly enriched in the tumor microenvironment and promotes tumor progression. Long intergenic non-coding RNAs (lincRNA) are a new family of regulatory RNAs that modulate fundamental cellular processes via diverse mechanisms.

Journal ArticleDOI
TL;DR: This study demonstrates that the EGfrvIII/CAR-modified T cells can destroy glioma cells efficiently in an EGFRvIII specific manner and release IFN-γ in an antigen dependent manner.
Abstract: Background Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells appears to be a promising immunotherapeutic strategy. CAR combines the specificity of antibody and cytotoxicity of cytotoxic T lymphocytes, enhancing T cells’ ability to specifically target antigens and to effectively kill cancer cells. Recent efforts have been made to integrate the costimulatory signals in the CAR to improve the antitumor efficacy. Epidermal growth factor receptor variant III (EGFRvIII) is an attractive therapeutic target as it frequently expresses in glioma and many other types of cancers. Our current study aimed to investigate the specific and efficient antitumor effect of T cells modified with CAR containing inducible costimulator (ICOS) signaling domain.

Journal ArticleDOI
TL;DR: Notch1 signalling is required for hypoxia/HIF-1α-induced proliferation, invasion and chemoresistance in T-ALL and knockdown of Notch1 prevented the protective effect of hypoxIA/Hif-1 α against dexamethasone-induced apoptosis.
Abstract: Notch1 is a potent regulator known to play an oncogenic role in many malignancies including T-cell acute lymphoblastic leukemia (T-ALL). Tumor hypoxia and increased hypoxia-inducible factor-1α (HIF-1α) activity can act as major stimuli for tumor aggressiveness and progression. Although hypoxia-mediated activation of the Notch1 pathway plays an important role in tumor cell survival and invasiveness, the interaction between HIF-1α and Notch1 has not yet been identified in T-ALL. This study was designed to investigate whether hypoxia activates Notch1 signalling through HIF-1α stabilization and to determine the contribution of hypoxia and HIF-1α to proliferation, invasion and chemoresistance in T-ALL. T-ALL cell lines (Jurkat, Sup-T1) transfected with HIF-1α or Notch1 small interference RNA (siRNA) were incubated in normoxic or hypoxic conditions. Their potential for proliferation and invasion was measured by WST-8 and transwell assays. Flow cytometry was used to detect apoptosis and assess cell cycle regulation. Expression and regulation of components of the HIF-1α and Notch1 pathways and of genes related to proliferation, invasion and apoptosis were assessed by quantitative real-time PCR or Western blot. Hypoxia potentiated Notch1 signalling via stabilization and activation of the transcription factor HIF-1α. Hypoxia/HIF-1α-activated Notch1 signalling altered expression of cell cycle regulatory proteins and accelerated cell proliferation. Hypoxia-induced Notch1 activation increased the expression of matrix metalloproteinase-2 (MMP2) and MMP9, which increased invasiveness. Of greater clinical significance, knockdown of Notch1 prevented the protective effect of hypoxia/HIF-1α against dexamethasone-induced apoptosis. This sensitization correlated with losing the effect of hypoxia/HIF-1α on Bcl-2 and Bcl-xL expression. Notch1 signalling is required for hypoxia/HIF-1α-induced proliferation, invasion and chemoresistance in T-ALL. Pharmacological inhibitors of HIF-1α or Notch1 signalling may be attractive interventions for T-ALL treatment.

Journal ArticleDOI
TL;DR: This review focuses on the critical issues related to the clinical outcomes of CAR-based adoptive immunotherapy and discusses the rationales to refine this new cancer therapeutic modality.
Abstract: Recent years have witnessed much progress in both basic research and clinical trials regarding cancer immunotherapy with chimeric antigen receptor (CAR)-engineered T cells. The unique structure of CAR endows T cell tumor specific cytotoxicity and resistance to immunosuppressive microenvironment in cancers, which helps patients to better tackle the issue of immunological tolerance. Adoptive immunotherapy (AIT) using this supernatural T cell have gained momentum after decades of intense debates because of the promising results obtained from preclinical models and clinical trials. However, it is very important for us to evaluate thoroughly the challenges/obstacles before widespread clinical application, which clearly warrants more studies to improve our understanding of the mechanism underlying AIT. In this review, we focus on the critical issues related to the clinical outcomes of CAR-based adoptive immunotherapy and discuss the rationales to refine this new cancer therapeutic modality.

Journal ArticleDOI
TL;DR: The B-Raf protein is a key signaling molecule in the mitogen activated protein kinase (MAPK) signaling pathway and has been implicated in the pathogenesis of a variety of cancers.
Abstract: The B-Raf protein is a key signaling molecule in the mitogen activated protein kinase (MAPK) signaling pathway and has been implicated in the pathogenesis of a variety of cancers. An important V600E mutation has been identified and can cause constitutive B-Raf activation. Recent studies have evaluated a variety of small molecule inhibitors targeting B-Raf, including PLX4032/vemurafenib, dabrafenib, LGX818, GDC0879, XL281, ARQ736, PLX3603 (RO5212054), and RAF265. Therapeutic resistance has been identified and various mechanisms described. This review also discussed the current understanding of B-Raf signaling mechanism, methods of mutation detection, treatment strategies as well as potential methods of overcoming therapeutic resistance.

Journal ArticleDOI
TL;DR: Results suggest that a low starting dose of ruxolitinib with escalation to 10 mg BID may be appropriate in myelofibrosis patients with low platelet counts.
Abstract: Background: Ruxolitinib, a Janus kinase 1 and 2 inhibitor, demonstrated improvements in spleen volume, symptoms, and survival over placebo and best available therapy in intermediate-2 or high-risk myelofibrosis patients with baseline platelet counts ≥100 × 10 9 /L in phase III studies. The most common adverse events were dose-dependent anemia and thrombocytopenia, which were anticipated because thrombopoietin and erythropoietin signal through JAK2. These events were manageable, rarely leading to treatment discontinuation. Because approximately one-quarter of MF patients have platelet counts <100 × 10 9 /L consequent to their disease, ruxolitinib was evaluated in this subset of patients using lower initial doses. Interim results of a phase II study of ruxolitinib in myelofibrosis patients with baseline platelet counts of 50-100 × 10 9 /L are reported. Methods: Ruxolitinib was initiated at a dose of 5 mg twice daily (BID), and doses could be increased by 5 mg once daily every 4 weeks to 10 mg BID if platelet counts remained adequate. Additional dosage increases required evidence of suboptimal efficacy. Assessments included measurement of spleen volume by MRI, MF symptoms by MF Symptom Assessment Form v2.0 Total Symptom Score [TSS]), Patient Global Impression of Change (PGIC); EORTC QLQ-C30, and safety/tolerability. Results: By week 24, 62% of patients achieved stable doses ≥10 mg BID. Median reductions in spleen volume and TSS were 24.2% and 43.8%, respectively. Thrombocytopenia necessitating dose reductions and dose interruptions occurred in 12 and 8 patients, respectively, and occurred mainly in patients with baseline platelet counts ≤75×10 9 /L. Seven patients experienced platelet count increases ≥15×10 9 /L. Mean hemoglobin levels remained stable over the treatment period. Two patients discontinued for adverse events: 1 for grade 4 retroperitoneal hemorrhage secondary to multiple and suspected pre-existing renal artery aneurysms and 1 for grade 4 thrombocytopenia. Conclusions: Results suggest that a low starting dose of ruxolitinib with escalation to 10 mg BID may be appropriate in myelofibrosis patients with low platelet counts.

Journal ArticleDOI
TL;DR: The data presented at 2012 American Society of Clinical Oncology and 2012 San Antonio Breast Cancer Symposium regarding progress made in the field of Her2 positive breast cancer are reviewed and the future of HER2 targeted therapy is examined.
Abstract: Introduction: Breast cancer is the second most common cause of death for women behind lung cancer and the most common cause of cancer deaths for women aged 45–55 years old (CDC.gov 2012). Although there continue to be enormously large numbers of disease incidence, deaths have been declining due to the disease with two hallmark time frames. The first occurred during the mid to late 1980’s when hormonal therapy was introduced as a treatment for ER/PR positive breast cancer. The second occurred in the late 1990’s when trastuzumab was introduced in treating HER2 positive breast cancer. These remarkable accomplishments in developing novel targeted therapies for breast cancer, along with a better understanding of the disease biology have improved disease outcome over the past 20 years. This article reviews the data presented at 2012 American Society of Clinical Oncology and 2012 San Antonio Breast Cancer Symposium regarding progress made in the field of HER2 positive breast cancer and examines the future of HER2 targeted therapy.

Journal ArticleDOI
TL;DR: Compared with BuCy, BuFlu as a myeloablative condition regimen was associated with lower toxicities and comparable anti-leukemic activity in AML-CR1 patients undergoing allo-HSCT.
Abstract: We conducted a prospective, randomized, open-label, multicenter study to compare busulfan plus fludarabine (BuFlu) with busulfan plus cyclophosphamide (BuCy) as the conditioning regimen in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute myeloid leukemia (AML) in first complete remission (CR1). Totally 108 AML-CR1 patients undergoing allo-HSCT were randomized into BuCy (busulfan 1.6 mg/kg, q12 hours, -7 ~ -4d; cyclophosphamide 60 mg/kg.d, -3 ~ -2d) or BuFlu (busulfan 1.6 mg/kg, q12 hours, -5 ~ -2d; fludarabine 30 mg/m2.d, -6 ~ -2d) group. Hematopoietic engraftment, regimen-related toxicity (RRT), graft-versus-host disease (GVHD), transplant related mortality (TRM), and overall survival were compared between the two groups. All patients achieved hematopoietic reconstitution except for two patients who died of RRT during conditioning. All patients obtained complete donor chimerism by day +30 post-transplantation. The incidence of total and III-IV RRT were 94.4% and 81.5% (P = 0.038), and 16.7% and 0.0% (P = 0.002), respectively, in BuCy and BuFlu group. With a median follow up of 609 (range, 3–2130) days after transplantation, the 5-year cumulative incidence of TRM were 18.8 ± 6.9% and 9.9 ± 6.3% (P = 0.104); the 5-year cumulative incidence of leukemia relapse were 16.5 ± 5.8% and 16.2 ± 5.3% (P = 0.943); the 5-year disease-free survival and overall survival were 67.4 ± 7.6% and 75.3 ± 7.2% (P = 0.315), and 72.3 ± 7.5% and 81.9 ± 7.0% (P = 0.177), respectively in BuCy and BuFlu group. Compared with BuCy, BuFlu as a myeloablative condition regimen was associated with lower toxicities and comparable anti-leukemic activity in AML-CR1 patients undergoing allo-HSCT.

Journal ArticleDOI
TL;DR: Despite the small size and short duration of this study, there was a decrease in platelet activation biomarkers and a trend toward decreased pain and prasugrel was well tolerated and not associated with serious hemorrhagic events.
Abstract: Background: Platelet activation has been implicated in the pathogenesis of sickle cell disease (SCD) suggesting antiplatelet agents may be therapeutic. To evaluate the safety of prasugrel, a thienopyridine antiplatelet agent, in adult patients with SCD, we conducted a double-blind, randomized, placebo-controlled study. Methods: The primary endpoint, safety, was measured by hemorrhagic events requiring medical intervention. Patients were randomized to prasugrel 5 mg daily (n = 41) or placebo (n = 21) for 30 days. Platelet function by VerifyNow W P2Y12 and vasodilator-stimulated phosphoprotein assays at days 10 and 30 were significantly inhibited in prasugrel- compared with placebo-treated SCD patients. Results: There were no hemorrhagic events requiring medical intervention in either study arm. Mean pain rate (percentage of days with pain) and intensity in the prasugrel arm were decreased compared with placebo. However, these decreases did not reach statistical significance. Platelet surface P-selectin and plasma soluble P-selectin, biomarkers of in vivo platelet activation, were significantly reduced in SCD patients receiving prasugrel compared with placebo. In sum, prasugrel was well tolerated and not associated with serious hemorrhagic events. Conclusions: Despite the small size and short duration of this study, there was a decrease in platelet activation biomarkers and a trend toward decreased pain.

Journal ArticleDOI
TL;DR: CHOP-L chemotherapy in combination with radiotherapy is a safe and highly effective treatment for newly diagnosed ENKTL and the major adverse events were myelosuppression, liver dysfunction, and digestive tract toxicities.
Abstract: To explore the efficacy and safety of L-asparaginase in newly-diagnosed extranodal nature killer (NK)/T –cell lymphoma (ENKTL), we conducted a prospective phase II study of L-asparaginase, cyclophosphamide, vincristine, doxorubicin and dexamethasone (CHOP-L) regimen in combination with radiotherapy. Patients with newly diagnosed ENKTL and an ECOG performance status of 0 to 2 were eligible for enrollment. Treatment included 6–8 cycles of CHOP-L (cyclophosphamide, 750 mg/m2 day 1; vincristine, 1.4 mg/m2 day 1 (maximal dose 2 mg), doxorubicin 50 mg/m2 day 1; dexamethasone 10 mg days 1–8; L-asparaginase 6000 u/m2 days 2–8). Radiotherapy was scheduled after 4–6 cycles of CHOP-L regimen, depending on stage and primary anatomic site. The primary endpoint was complete response (CR) rate. A total of 38 eligible patients were enrolled. The median age was 40.5 years (range, 15 to 71 years). Their clinical characteristics were male to female ratio, 24:14; Ann Arbor stage I, 20; II, 11; III, 3; IV, 4. CR and overall response rates were 81.6% (95% CI, 69.3% to 93.9%) and 84.2%, respectively. With a median follow-up of 25 months, the 2-year overall survival, progression-free survival and disease-free survival rates were 80.1% (95%CI, 73.3% to 86.9%), 81% (95%CI, 74.5% to 87.5%) and 93.6% (95%CI, 89.3% to 97.9%), respectively. The major adverse events were myelosuppression, liver dysfunction, and digestive tract toxicities. Grade 3 to 4 leukopenia and neutropenia were 76.3% and 84.2%, respectively. No treatment-related death was observed. CHOP-L chemotherapy in combination with radiotherapy is a safe and highly effective treatment for newly diagnosed ENKTL.

Journal ArticleDOI
TL;DR: Adoptive cellular therapy for restoring virus-specific immunity is a promising method in the treatment of viral diseases and the utilization of polymerase chain reaction facilitates the early diagnosis.
Abstract: Viral infections are important causes of morbidity and mortality after allogeneic stem cell hematopoietic transplantation (allo-HSCT). Although most viral infections present with asymptomatic or subclinical manifestations, viruses may result in fatal complications in severe immunocompromised recipients. Reactivation of latent viruses, such as herpesviruses, is frequent during the immunosuppression that occurs with allo-HSCT. Viruses acquired from community, such as the respiratory and gastrointestinal viruses, are also important pathogens of post-transplant viral diseases. Currently, molecular diagnostic methods have replaced or supplemented traditional methods, such as viral culture and antigen detection, in diagnosis of viral infections. The utilization of polymerase chain reaction facilitates the early diagnosis. In view of lacking efficacious agents for treatment of viral diseases, prevention of viral infections is extremely valuable. Application of prophylactic strategies including preemptive therapy reduces viral infections and diseases. Adoptive cellular therapy for restoring virus-specific immunity is a promising method in the treatment of viral diseases.

Journal ArticleDOI
TL;DR: Overall, the data indicated that ENKTL involving the GI tract has a dismal prognosis despite active treatment including chemotherapy and surgery, and more effective treatment strategies are required for this disease entity.
Abstract: Background The gastrointestinal (GI) tract is one of the most common extranasal sites in extranodal NK/T-cell lymphoma (ENKTL). However, data regarding ENKTL involving the GI tract are relatively scarce. Thus, we performed a multicenter, multinational retrospective study to analyze clinical features and treatment outcomes of ENKTL involving the GI tract.

Journal ArticleDOI
TL;DR: These findings confirmed the synergistic effect of the HDAC and MTOR inhibitors on Burkitt leukemia/lymphoma, and provided an insight into clinical application of targeting autophagy in treating MYC-associated lymphoid malignancies.
Abstract: Burkitt leukemia/lymphoma is a major subtype of aggressive B-cell lymphoma. Biological targeted therapies on this disease need to be further investigated and may help to improve the clinical outcome of the patients. This study examined the anti-tumor activity of the histone deacetylases (HDAC) inhibitor valproic acid (VPA) combined with the mammalian target of rapamycin (MTOR) inhibitor temsirolimus in Burkitt leukemia/lymphoma cell lines, as well as in primary tumor cells and a murine xenograft model. Co-treatment of VPA and temsirolimus synergistically inhibited the tumor cell growth and triggered the autophagic cell death, with a significant inhibition of MTOR signaling and MYC oncoprotein. Functioned as a class I HDAC inhibitor, VPA potentiated the effect of temsirolimus on autophagy through inhibiting HDAC1. Molecular silencing of HDAC1 using small interfering RNA (siRNA) attenuated VPA-mediated regulation of CDKN1A, CDKN1B and LC3-I/II, regression of tumor cell growth and induction of autophagy. Meanwhile, VPA counteracted temsirolimus-induced AKT activation via HDAC3 inhibition. HDAC3 siRNA abrogated the ability of VPA to modulate AKT phosphorylation, to suppress tumor cell growth and to induce autophagy. Strong antitumor effect was also observed on primary tumor cells while sparing normal hematopoiesis ex vivo. In a murine xenograft model established with subcutaneous injection of Namalwa cells, dual treatment efficiently blocked tumor growth, inhibited MYC and induced in situ autophagy. These findings confirmed the synergistic effect of the HDAC and MTOR inhibitors on Burkitt leukemia/lymphoma, and provided an insight into clinical application of targeting autophagy in treating MYC-associated lymphoid malignancies.

Journal ArticleDOI
TL;DR: In this large cohort of AML-patients treated with azacitidine, age >80 years, number of comorbidities and/or BM-blasts >30% did not adversely impact OS and hematologic improvement alone alone was sufficient to confer OS benefit.
Abstract: The Austrian Azacitidine Registry is a multi-center database (ClinicalTrials.gov: NCT01595295 ). The nature and intent of the registry was to gain a comprehensive view of the use, safety and efficacy of the drug in a broad range of AML-patients treated in real-life scenarios. The sole inclusion criteria were the diagnosis of WHO-AML and treatment with at least one dose of azacitidine. No formal exclusion criteria existed. A total of 155 AML-patients who were mostly unfit/ineligible for intensive chemotherapy, or had progressed despite conventional treatment, were included. True ITT-analyses and exploratory analyses regarding the potential prognostic value of baseline-variables/performance-/comorbidity-/risk-scores on overall survival (OS), were performed. In this cohort of 155 pretreated (60%), and/or comorbid (87%), elderly (45% ≥75 years) AML-patients, azacitidine was well tolerated and efficacious, with an overall response rate (CR, mCR, PR, HI) of 45% in the total cohort (ITT) and 65% in patients evaluable according to IWG-criteria, respectively. Pre-treatment with conventional chemotherapy (P = .113), age ≤/>80 years (P = .853), number of comorbidities (P = .476), and bone marrow (BM) blast count (P = .663) did not influence OS. In multivariate analysis hematologic improvement alone (without the requirement of concomitant bone marrow blast reduction), although currently not regarded as a standard form of response assessment in AML, was sufficient to confer OS benefit (18.9 vs. 6.0 months; P = .0015). Further deepening of response after first response was associated with improved OS (24.7 vs. 13.7 months; P 80 years, number of comorbidities and/or BM-blasts >30% did not adversely impact OS.

Journal ArticleDOI
TL;DR: MIR129-2 is a tumor suppressive microRNA frequently methylated in lymphoid but not myeloid malignancies, leading to reversible MIR129 -2 silencing.
Abstract: Background: MIR129-2 has been shown to be a tumor suppressor microRNA hypermethylated in epithelial cancers. Patients and methods: Epigenetic inactivation of MIR129-2 was studied by methylation-specific PCR (MSP) in 13 cell lines (eight myeloma and five lymphoma), 15 normal controls and 344 primary samples including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), non-Hodgkin’s lymphoma (NHL), multiple myeloma (MM) at diagnosis, MM at relapse/progression, and monoclonal gammopathy of undetermined significance (MGUS). Expression of MIR129 and its target, SOX4 ,i n cell lines was measured before and after hypomethylating treatment and MIR129 overexpression. MIR129 expression was correlated with MIR129-2 methylation status in primary lymphoma samples. Tumor suppressor function of MIR129 was demonstrated by MTT and trypan blue exclusion assay after MIR129 overexpression. Results: The sensitivity of the methylated-MSP was one in 10 3 . Different MSP statuses, including complete methylation, partial methylation, and complete unmethylation, were verified by quantitative bisulfite pyrosequencing. All five lymphoma and seven of eight myeloma cell lines showed complete and partial MIR129-2 methylation. In primary samples, MIR129-2 methylation was absent in AML and CML, but detected in 5% ALL, 45.9% CLL, 49.5% MM at diagnosis, and 59.1% NHL. In CLL, MIR129-2 methylation adversely impacted on survival (p=0.004). In MM, MIR129-2 methylation increased from 27.5% MGUS to 49.5% MM at diagnosis and 41.5% at relapse/ progression (p=0.023). In NHL, MIR129-2 methylation was associated with MIR124-1 and MIR203 methylation (p<0.001), and lower MIR129 expression (p=0.009). Hypomethylation treatment of JEKO-1, homozygously methylated for MIR129-2, led to MIR129-2 demethylation and MIR129 re-expression, with downregulation of SOX4 mRNA. Moreover, MIR129 overexpression in both mantle cell lines, JEKO-1 and GRANTA-519, inhibited cellular proliferation and enhanced cell death, with concomitant SOX4 mRNA downregulation. Conclusions: MIR129-2 is a tumor suppressive microRNA frequently methylated in lymphoid but not myeloid malignancies, leading to reversible MIR129-2 silencing. In CLL, MIR129-2 methylation was associated with an inferior survival. In MM, MIR129-2 methylation might be acquired during progression from MGUS to symptomatic MM. In NHL, MIR129-2 methylation might collaborate with MIR124-1 and MIR203 methylation in lymphomagenesis.

Journal ArticleDOI
TL;DR: It is demonstrated that L1cam, overexpressed in Gastric cancer and associated with poor prognosis, plays an important role in the progression and metastasis of gastric cancer.
Abstract: Previous reports have demonstrated that L1cam is aberrantly expressed in various tumors. The potential role of L1cam in the progression and metastasis of gastric cancer is still not clear and needs exploring. Expression of L1cam was evaluated in gastric cancer tissues and cell lines by immunohistochemistry and Western blot. The relationship between L1cam expression and clinicopathological characteristics was analyzed. The effects of L1cam on cell proliferation, migration and invasion were investigated in gastric cancer cell lines both in vitro and in vivo. The impact of L1cam on PI3K/Akt pathway was also evaluated. L1cam was overexpressed in gastric cancer tissues and cell lines. L1cam expression was correlated with aggressive tumor phenotype and poor overall survival in gastric cancer patients. Ectopic expression of L1cam in gastric cell lines significantly promoted cell proliferation, migration and invasion whereas knockdown of L1cam inhibited cell proliferation, migration and invasion in vitro as well as tumorigenesis and metastasis in vivo. The low level of phosphorylated Akt in HGC27 cells was up-regulated after ectopic expression of L1cam, whereas the high level of phosphorylated Akt in SGC7901 cells was suppressed by knockdown of L1cam. Moreover, the migration and invasion promoted by L1cam overexpression in gastric cancer cells could be abolished by either application of LY294002 (a phosphoinositide-3-kinase inhibitor) or knockdown of endogenous Akt by small interfering RNA. Our study demonstrated that L1cam, overexpressed in gastric cancer and associated with poor prognosis, plays an important role in the progression and metastasis of gastric cancer.

Journal ArticleDOI
TL;DR: Encouraging results warrant a rapid translation of silvestrol for clinical testing in AML through a novel mechanism resulting in inhibition of FLT3 and miR-155 expression.
Abstract: Activating mutations [internal tandem duplication (ITD)] or overexpression of the FMS-like tyrosine kinase receptor-3 (FLT3) gene are associated with poor outcome in acute myeloid leukemia (AML) patients, underscoring the need for novel therapeutic approaches. The natural product silvestrol has potent antitumor activity in several malignancies, but its therapeutic impact on distinct molecular high-risk AML subsets remains to be fully investigated. We examined here the preclinical activity of silvestrol in FLT3-ITD and FLT3 wild-type (wt) AML. Silvestrol in vitro anti-leukemic activity was examined by colorimetric cell viability assay, colony-forming and flow cytometry assays assessing growth inhibition and apoptosis, respectively. Pharmacological activity of silvestrol on FLT3 mRNA translation, mRNA and protein expression was determined by RNA-immunoprecipitation, qRT-PCR and immunoblot analyses, respectively. Silvestrol in vivo efficacy was investigated using MV4-11 leukemia-engrafted mice. Silvestrol shows antileukemia activity at nanomolar concentrations both in FLT3-wt overexpressing (THP-1) and FLT3-ITD (MV4-11) expressing AML cell lines (IC50 = 3.8 and 2.7 nM, respectively) and patients’ primary blasts [IC50 = ~12 nM (FLT3-wt) and ~5 nM (FLT3-ITD)]. Silvestrol increased apoptosis (~4fold, P = 0.0001), and inhibited colony-formation (100%, P < 0.0001) in primary blasts. Silvestrol efficiently inhibited FLT3 translation reducing FLT3 protein expression by 80–90% and decreased miR-155 levels (~60%), a frequently co-regulated onco-miR in FLT3-ITD-positive AML. The median survival of silvestrol-treated vs vehicle-treated mice was 63 vs 29 days post-engraftment, respectively (P < 0.0001). Silvestrol exhibits significant in vivo and in vitro antileukemic activities in AML through a novel mechanism resulting in inhibition of FLT3 and miR-155 expression. These encouraging results warrant a rapid translation of silvestrol for clinical testing in AML.

Journal ArticleDOI
TL;DR: The role of PF-4 and CTAP-III in the regulation of tumor angiogenesis is reviewed; the results of clinical trial using recombinant PF- 4 (rPF-4); and the use ofPF- 4 and CTap-III as cancer biomarkers are used.
Abstract: With the recent addition of anti-angiogenic agents to cancer treatment, the angiogenesis regulators in platelets are gaining importance. Platelet factor 4 (PF-4/CXCL4) and Connective tissue activating peptide III (CTAP-III) are two platelet-associated chemokines that modulate tumor angiogenesis, inflammation within the tumor microenvironment, and in turn tumor growth. Here, we review the role of PF-4 and CTAP-III in the regulation of tumor angiogenesis; the results of clinical trial using recombinant PF-4 (rPF-4); and the use of PF-4 and CTAP-III as cancer biomarkers.