scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Zhejiang University Science C in 2017"


Journal ArticleDOI
TL;DR: The rapid development of core technologies in the new era of ‘Internet plus AI’ is analyzed, which is triggering a great change in the models, means, and ecosystems of the manufacturing industry, as well as in the development of AI.
Abstract: Based on research into the applications of artificial intelligence (AI) technology in the manufacturing industry in recent years, we analyze the rapid development of core technologies in the new era of ‘Internet plus AI’, which is triggering a great change in the models, means, and ecosystems of the manufacturing industry, as well as in the development of AI. We then propose new models, means, and forms of intelligent manufacturing, intelligent manufacturing system architecture, and intelligent manufacturing technology system, based on the integration of AI technology with information communications, manufacturing, and related product technology. Moreover, from the perspectives of intelligent manufacturing application technology, industry, and application demonstration, the current development in intelligent manufacturing is discussed. Finally, suggestions for the application of AI in intelligent manufacturing in China are presented.

419 citations


Journal ArticleDOI
TL;DR: Basic elements of hybrid-augmented intelligence based on cognitive computing include intuitive reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based on memory and reasoning.
Abstract: The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans. Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models: one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system. This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.

184 citations


Journal ArticleDOI
TL;DR: An optimal beamforming technique is suggested that can provide the highest performance in massive MIMO systems, satisfying the requirements of next-generation wireless communication systems.
Abstract: Massive multiple-input multiple-output (MIMO) systems combined with beamforming antenna array technologies are expected to play a key role in next-generation wireless communication systems (5G), which will be deployed in 2020 and beyond. The main objective of this review paper is to discuss the state-of-the-art research on the most favourable types of beamforming techniques that can be deployed in massive MIMO systems and to clarify the importance of beamforming techniques in massive MIMO systems for eliminating and resolving the many technical hitches that massive MIMO system implementation faces. Classifications of optimal beamforming techniques that are used in wireless communication systems are reviewed in detail to determine which techniques are more suitable for deployment in massive MIMO systems to improve system throughput and reduce intra- and inter-cell interference. To overcome the limitations in the literature, we have suggested an optimal beamforming technique that can provide the highest performance in massive MIMO systems, satisfying the requirements of next-generation wireless communication systems.

156 citations


Journal ArticleDOI
TL;DR: It is concluded that integrating data-driven machine learning with human knowledge can effectively lead to explainable, robust, and general AI.
Abstract: In this paper, we review recent emerging theoretical and technological advances of artificial intelligence (AI) in the big data settings. We conclude that integrating data-driven machine learning with human knowledge (common priors or implicit intuitions) can effectively lead to explainable, robust, and general AI, as follows: from shallow computation to deep neural reasoning; from merely data-driven model to data-driven with structured logic rules models; from task-oriented (domain-specific) intelligence (adherence to explicit instructions) to artificial general intelligence in a general context (the capability to learn from experience). Motivated by such endeavors, the next generation of AI, namely AI 2.0, is positioned to reinvent computing itself, to transform big data into structured knowledge, and to enable better decision-making for our society.

108 citations


Journal ArticleDOI
TL;DR: A machine learning based malware analysis system, which is composed of three modules: data processing, decision making, and new malware detection, which can effectively classify the unknown malware with a best accuracy of 98.9%, and successfully detects 86.7% of the new malware.
Abstract: The explosive growth of malware variants poses a major threat to information security. Traditional anti-virus systems based on signatures fail to classify unknown malware into their corresponding families and to detect new kinds of malware programs. Therefore, we propose a machine learning based malware analysis system, which is composed of three modules: data processing, decision making, and new malware detection. The data processing module deals with gray-scale images, Opcode n-gram, and import functions, which are employed to extract the features of the malware. The decision-making module uses the features to classify the malware and to identify suspicious malware. Finally, the detection module uses the shared nearest neighbor (SNN) clustering algorithm to discover new malware families. Our approach is evaluated on more than 20 000 malware instances, which were collected by Kingsoft, ESET NOD32, and Anubis. The results show that our system can effectively classify the unknown malware with a best accuracy of 98.9%, and successfully detects 86.7% of the new malware.

104 citations


Journal ArticleDOI
TL;DR: Experimental results show that the real-time road traffic state prediction based on ARIMA and the Kalman filter is feasible and can achieve high accuracy.
Abstract: The realization of road traffic prediction not only provides real-time and effective information for travelers, but also helps them select the optimal route to reduce travel time. Road traffic prediction offers traffic guidance for travelers and relieves traffic jams. In this paper, a real-time road traffic state prediction based on autoregressive integrated moving average (ARIMA) and the Kalman filter is proposed. First, an ARIMA model of road traffic data in a time series is built on the basis of historical road traffic data. Second, this ARIMA model is combined with the Kalman filter to construct a road traffic state prediction algorithm, which can acquire the state, measurement, and updating equations of the Kalman filter. Third, the optimal parameters of the algorithm are discussed on the basis of historical road traffic data. Finally, four road segments in Beijing are adopted for case studies. Experimental results show that the real-time road traffic state prediction based on ARIMA and the Kalman filter is feasible and can achieve high accuracy.

88 citations


Journal ArticleDOI
TL;DR: The trends in the development of intelligent unmanned autonomous systems are introduced by summarizing the main achievements in each technological platform by classify the relevant technologies into seven areas.
Abstract: Intelligent unmanned autonomous systems are some of the most important applications of artificial intelligence (AI). The development of such systems can significantly promote innovation in AI technologies. This paper introduces the trends in the development of intelligent unmanned autonomous systems by summarizing the main achievements in each technological platform. Furthermore, we classify the relevant technologies into seven areas, including AI technologies, unmanned vehicles, unmanned aerial vehicles, service robots, space robots, marine robots, and unmanned workshops/intelligent plants. Current trends and developments in each area are introduced.

87 citations


Journal ArticleDOI
TL;DR: A well-defined taxonomy of big data storage technologies is presented to assist data analysts and researchers in understanding and selecting a storage mechanism that better fits their needs, and several future research challenges are highlighted with the intention to expedite the deployment of a reliable and scalable storage system.
Abstract: There is a great thrust in industry toward the development of more feasible and viable tools for storing fast-growing volume, velocity, and diversity of data, termed ‘big data’. The structural shift of the storage mechanism from traditional data management systems to NoSQL technology is due to the intention of fulfilling big data storage requirements. However, the available big data storage technologies are inefficient to provide consistent, scalable, and available solutions for continuously growing heterogeneous data. Storage is the preliminary process of big data analytics for real-world applications such as scientific experiments, healthcare, social networks, and e-business. So far, Amazon, Google, and Apache are some of the industry standards in providing big data storage solutions, yet the literature does not report an in-depth survey of storage technologies available for big data, investigating the performance and magnitude gains of these technologies. The primary objective of this paper is to conduct a comprehensive investigation of state-of-the-art storage technologies available for big data. A well-defined taxonomy of big data storage technologies is presented to assist data analysts and researchers in understanding and selecting a storage mechanism that better fits their needs. To evaluate the performance of different storage architectures, we compare and analyze the existing approaches using Brewer’s CAP theorem. The significance and applications of storage technologies and support to other categories are discussed. Several future research challenges are highlighted with the intention to expedite the deployment of a reliable and scalable storage system.

84 citations


Journal ArticleDOI
TL;DR: By presenting approaches, advances, and future directions in cross-media analysis and reasoning, the goal is to draw more attention to the state-of-the-art advances in the field, and to provide technical insights by discussing the challenges and research directions in these areas.
Abstract: Cross-media analysis and reasoning is an active research area in computer science, and a promising direction for artificial intelligence. However, to the best of our knowledge, no existing work has summarized the state-of-the-art methods for cross-media analysis and reasoning or presented advances, challenges, and future directions for the field. To address these issues, we provide an overview as follows: (1) theory and model for cross-media uniform representation; (2) cross-media correlation understanding and deep mining; (3) cross-media knowledge graph construction and learning methodologies; (4) cross-media knowledge evolution and reasoning; (5) cross-media description and generation; (6) cross-media intelligent engines; and (7) cross-media intelligent applications. By presenting approaches, advances, and future directions in cross-media analysis and reasoning, our goal is not only to draw more attention to the state-of-the-art advances in the field, but also to provide technical insights by discussing the challenges and research directions in these areas.

80 citations


Journal ArticleDOI
TL;DR: This paper describes the concept of crowd intelligence, and explains its relationship to the existing related concepts, e.g., crowdsourcing and human computation, and introduces four categories of representative crowd intelligence platforms.
Abstract: The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence (AI), bringing a new wave of AI research and promoting it into the new era of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd intelligence has attracted much attention from both industry and research communities. Specifically, crowd intelligence provides a novel problem-solving paradigm through gathering the intelligence of crowds to address challenges. In particular, due to the rapid development of the sharing economy, crowd intelligence not only becomes a new approach to solving scientific challenges, but has also been integrated into all kinds of application scenarios in daily life, e.g., online-to-offline (O2O) application, real-time traffic monitoring, and logistics management. In this paper, we survey existing studies of crowd intelligence. First, we describe the concept of crowd intelligence, and explain its relationship to the existing related concepts, e.g., crowdsourcing and human computation. Then, we introduce four categories of representative crowd intelligence platforms. We summarize three core research problems and the state-of-the-art techniques of crowd intelligence. Finally, we discuss promising future research directions of crowd intelligence.

76 citations


Journal ArticleDOI
TL;DR: Specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys.
Abstract: Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity.

Journal ArticleDOI
Jianru Xue1, Di Wang1, Shao-yi Du1, Dixiao Cui1, Yong Huang1, Nanning Zheng1 
TL;DR: This paper proposes a vision-centered multi-sensor fusing framework for a traffic environment perception approach to autonomous driving, which fuses camera, LIDAR, and GIS information consistently via both geometrical and semantic constraints for efficient self-localization and obstacle perception.
Abstract: Most state-of-the-art robotic cars’ perception systems are quite different from the way a human driver understands traffic environments. First, humans assimilate information from the traffic scene mainly through visual perception, while the machine perception of traffic environments needs to fuse information from several different kinds of sensors to meet safety-critical requirements. Second, a robotic car requires nearly 100% correct perception results for its autonomous driving, while an experienced human driver works well with dynamic traffic environments, in which machine perception could easily produce noisy perception results. In this paper, we propose a vision-centered multi-sensor fusing framework for a traffic environment perception approach to autonomous driving, which fuses camera, LIDAR, and GIS information consistently via both geometrical and semantic constraints for efficient self-localization and obstacle perception. We also discuss robust machine vision algorithms that have been successfully integrated with the framework and address multiple levels of machine vision techniques, from collecting training data, efficiently processing sensor data, and extracting low-level features, to higher-level object and environment mapping. The proposed framework has been tested extensively in actual urban scenes with our self-developed robotic cars for eight years. The empirical results validate its robustness and efficiency.

Journal ArticleDOI
TL;DR: A neuro-heuristic computing platform for finding the solution for initial value problems (IVPs) of nonlinear pantograph systems based on functional differential equations (P-FDEs) of different orders is presented.
Abstract: We present a neuro-heuristic computing platform for finding the solution for initial value problems (IVPs) of nonlinear pantograph systems based on functional differential equations (P-FDEs) of different orders. In this scheme, the strengths of feed-forward artificial neural networks (ANNs), the evolutionary computing technique mainly based on genetic algorithms (GAs), and the interior-point technique (IPT) are exploited. Two types of mathematical models of the systems are constructed with the help of ANNs by defining an unsupervised error with and without exactly satisfying the initial conditions. The design parameters of ANN models are optimized with a hybrid approach GA–IPT, where GA is used as a tool for effective global search, and IPT is incorporated for rapid local convergence. The proposed scheme is tested on three different types of IVPs of P-FDE with orders 1–3. The correctness of the scheme is established by comparison with the existing exact solutions. The accuracy and convergence of the proposed scheme are further validated through a large number of numerical experiments by taking different numbers of neurons in ANN models.

Journal ArticleDOI
TL;DR: BORON is a well-suited cipher design for applications where both a small footprint area and low power dissipation play a crucial role and it has a higher throughput as compared to other existing SP network ciphers.
Abstract: We propose an ultra-lightweight, compact, and low power block cipher BORON. BORON is a substitution and permutation based network, which operates on a 64-bit plain text and supports a key length of 128/80 bits. BORON has a compact structure which requires 1939 gate equivalents (GEs) for a 128-bit key and 1626 GEs for an 80-bit key. The BORON cipher includes shift operators, round permutation layers, and XOR operations. Its unique design helps generate a large number of active S-boxes in fewer rounds, which thwarts the linear and differential attacks on the cipher. BORON shows good performance on both hardware and software platforms. BORON consumes less power as compared to the lightweight cipher LED and it has a higher throughput as compared to other existing SP network ciphers. We also present the security analysis of BORON and its performance as an ultra-lightweight compact cipher. BORON is a well-suited cipher design for applications where both a small footprint area and low power dissipation play a crucial role.

Journal ArticleDOI
TL;DR: This work proposes a non-invasive powerbased anomaly detection scheme for PLCs that requires no software modification on the original system and is able to detect unknown attacks effectively.
Abstract: Industrial control systems (ICSs) are widely used in critical infrastructures, making them popular targets for attacks to cause catastrophic physical damage. As one of the most critical components in ICSs, the programmable logic controller (PLC) controls the actuators directly. A PLC executing a malicious program can cause significant property loss or even casualties. The number of attacks targeted at PLCs has increased noticeably over the last few years, exposing the vulnerability of the PLC and the importance of PLC protection. Unfortunately, PLCs cannot be protected by traditional intrusion detection systems or antivirus software. Thus, an effective method for PLC protection is yet to be designed. Motivated by these concerns, we propose a non-invasive powerbased anomaly detection scheme for PLCs. The basic idea is to detect malicious software execution in a PLC through analyzing its power consumption, which is measured by inserting a shunt resistor in series with the CPU in a PLC while it is executing instructions. To analyze the power measurements, we extract a discriminative feature set from the power trace, and then train a long short-term memory (LSTM) neural network with the features of normal samples to predict the next time step of a normal sample. Finally, an abnormal sample is identified through comparing the predicted sample and the actual sample. The advantages of our method are that it requires no software modification on the original system and is able to detect unknown attacks effectively. The method is evaluated on a lab testbed, and for a trojan attack whose difference from the normal program is around 0.63%, the detection accuracy reaches 99.83%.

Journal ArticleDOI
TL;DR: This work investigates a multifunctional n-step honeycomb network which has not been studied before and derives two new formulae for equivalent resistance in the resistor network and equivalent impedance in the LC network.
Abstract: We investigate a multifunctional n-step honeycomb network which has not been studied before. By adjusting the circuit parameters, such a network can be transformed into several different networks with a variety of functions, such as a regular ladder network and a triangular network. We derive two new formulae for equivalent resistance in the resistor network and equivalent impedance in the LC network, which are in the fractional-order domain. First, we simplify the complex network into a simple equivalent model. Second, using Kirchhoff’s laws, we establish a fractional difference equation. Third, we construct an equivalent transformation method to obtain a general solution for the nonlinear differential equation. In practical applications, several interesting special results are obtained. In particular, an n-step impedance LC network is discussed and many new characteristics of complex impedance have been found.

Journal ArticleDOI
TL;DR: This paper briefly review the state-of-the-art advances across different areas of perception, including visual perception, auditory perception, speech perception, and perceptual information processing and learning engines and envision several R&D trends in intelligent perception for the forthcoming era of AI 2.0.
Abstract: Perception is the interaction interface between an intelligent system and the real world. Without sophisticated and flexible perceptual capabilities, it is impossible to create advanced artificial intelligence (AI) systems. For the next-generation AI, called ‘AI 2.0’, one of the most significant features will be that AI is empowered with intelligent perceptual capabilities, which can simulate human brain’s mechanisms and are likely to surpass human brain in terms of performance. In this paper, we briefly review the state-of-the-art advances across different areas of perception, including visual perception, auditory perception, speech perception, and perceptual information processing and learning engines. On this basis, we envision several RD (2) auditory perception and computation in an actual auditory setting; (3) speech perception and computation in a natural interaction setting; (4) autonomous learning of perceptual information; (5) large-scale perceptual information processing and learning platforms; and (6) urban omnidirectional intelligent perception and reasoning engines. We believe these research directions should be highlighted in the future plans for AI 2.0.

Journal ArticleDOI
TL;DR: A novel strategy of designing a chaotic coverage path planner for the mobile robot based on the Chebyshev map for achieving special missions and can avoid detection of the obstacles and the workplace boundaries, and runs safely in the feasible areas.
Abstract: We introduce a novel strategy of designing a chaotic coverage path planner for the mobile robot based on the Chebyshev map for achieving special missions. The designed chaotic path planner consists of a two-dimensional Chebyshev map which is constructed by two one-dimensional Chebyshev maps. The performance of the time sequences which are generated by the planner is improved by arcsine transformation to enhance the chaotic characteristics and uniform distribution. Then the coverage rate and randomness for achieving the special missions of the robot are enhanced. The chaotic Chebyshev system is mapped into the feasible region of the robot workplace by affine transformation. Then a universal algorithm of coverage path planning is designed for environments with obstacles. Simulation results show that the constructed chaotic path planner can avoid detection of the obstacles and the workplace boundaries, and runs safely in the feasible areas. The designed strategy is able to satisfy the requirements of randomness, coverage, and high efficiency for special missions.

Journal ArticleDOI
TL;DR: This work presents a feature selection approach based on a similarity measure (SM) for software defect prediction that performs better than or is comparable to the compared feature selection approaches in terms of classification performance.
Abstract: Software defect prediction is aimed to find potential defects based on historical data and software features. Software features can reflect the characteristics of software modules. However, some of these features may be more relevant to the class (defective or non-defective), but others may be redundant or irrelevant. To fully measure the correlation between different features and the class, we present a feature selection approach based on a similarity measure (SM) for software defect prediction. First, the feature weights are updated according to the similarity of samples in different classes. Second, a feature ranking list is generated by sorting the feature weights in descending order, and all feature subsets are selected from the feature ranking list in sequence. Finally, all feature subsets are evaluated on a k-nearest neighbor (KNN) model and measured by an area under curve (AUC) metric for classification performance. The experiments are conducted on 11 National Aeronautics and Space Administration (NASA) datasets, and the results show that our approach performs better than or is comparable to the compared feature selection approaches in terms of classification performance.

Journal ArticleDOI
TL;DR: This paper introduces an attention-based deep learning model to address the answer selection task for question answering and employs a bidirectional long short-term memory encoder-decoder, which has been demonstrated to be effective on machine translation tasks to bridge the lexical gap between questions and answers.
Abstract: One of the key challenges for question answering is to bridge the lexical gap between questions and answers because there may not be any matching word between them. Machine translation models have been shown to boost the performance of solving the lexical gap problem between question-answer pairs. In this paper, we introduce an attention-based deep learning model to address the answer selection task for question answering. The proposed model employs a bidirectional long short-term memory (LSTM) encoder-decoder, which has been demonstrated to be effective on machine translation tasks to bridge the lexical gap between questions and answers. Our model also uses a step attention mechanism which allows the question to focus on a certain part of the candidate answer. Finally, we evaluate our model using a benchmark dataset and the results show that our approach outperforms the existing approaches. Integrating our model significantly improves the performance of our question answering system in the TREC 2015 LiveQA task.

Journal ArticleDOI
TL;DR: Three key aspects of light field cameras, i.e., model, calibration, and reconstruction, are reviewed extensively and light field based applications on informatics, physics, medicine, and biology are exhibited.
Abstract: Light field imaging is an emerging technology in computational photography areas. Based on innovative designs of the imaging model and the optical path, light field cameras not only record the spatial intensity of threedimensional (3D) objects, but also capture the angular information of the physical world, which provides new ways to address various problems in computer vision, such as 3D reconstruction, saliency detection, and object recognition. In this paper, three key aspects of light field cameras, i.e., model, calibration, and reconstruction, are reviewed extensively. Furthermore, light field based applications on informatics, physics, medicine, and biology are exhibited. Finally, open issues in light field imaging and long-term application prospects in other natural sciences are discussed.

Journal ArticleDOI
TL;DR: A simplified cascaded regression based 3D face reconstruction method is devised that can be integrated with standalone automated landmark detection methods and reconstruct3D face shapes that have the same pose and expression as the input face images, rather than normalized pose andexpression.
Abstract: Cascaded regression has been recently applied to reconstruct 3D faces from single 2D images directly in shape space, and has achieved state-of-the-art performance. We investigate thoroughly such cascaded regression based 3D face reconstruction approaches from four perspectives that are not well been studied: (1) the impact of the number of 2D landmarks; (2) the impact of the number of 3D vertices; (3) the way of using standalone automated landmark detection methods; (4) the convergence property. To answer these questions, a simplified cascaded regression based 3D face reconstruction method is devised. This can be integrated with standalone automated landmark detection methods and reconstruct 3D face shapes that have the same pose and expression as the input face images, rather than normalized pose and expression. An effective training method is also proposed by disturbing the automatically detected landmarks. Comprehensive evaluation experiments have been carried out to compare to other 3D face reconstruction methods. The results not only deepen the understanding of cascaded regression based 3D face reconstruction approaches, but also prove the effectiveness of the proposed method.

Journal ArticleDOI
TL;DR: A formation control strategy for multiple unmanned aerial vehicles (multi-UAV) based on second-order consensus is proposed, by introducing position and velocity coordination variables through neighbor-to-neighbor interaction to generate steering commands.
Abstract: We propose a formation control strategy for multiple unmanned aerial vehicles (multi-UAV) based on second-order consensus, by introducing position and velocity coordination variables through neighbor-to-neighbor interaction to generate steering commands. A cooperative guidance algorithm and a cooperative control algorithm are proposed together to maintain a specified geometric configuration, managing the position and attitude respectively. With the whole system composed of the six-degree-of-freedom UAV model, the cooperative guidance algorithm, and the cooperative control algorithm, the formation control strategy is a closed-loop one and with full states. The cooperative guidance law is a second-order consensus algorithm, providing the desired acceleration, pitch rate, and heading rate. Longitudinal and lateral motions are jointly considered, and the cooperative control law is designed by deducing state equations. Closed-loop stability of the formation is analyzed, and a necessary and sufficient condition is provided. Measurement errors in position data are suppressed by synchronization technology to improve the control precision. In the simulation, three-dimensional formation flight demonstrates the feasibility and effectiveness of the formation control strategy.

Journal ArticleDOI
TL;DR: The proposed approach is compared with one of the popular VANET-based related approaches called MC-DRIVE in addition to the traditional simple adaptive TSCS that uses the Webster method and the evaluation results show the superiority of the proposed approach based on both traffic and network QoS criteria.
Abstract: The importance of using adaptive traffic signal control for figuring out the unpredictable traffic congestion in today’s metropolitan life cannot be overemphasized. The vehicular ad hoc network (VANET), as an integral component of intelligent transportation systems (ITSs), is a new potent technology that has recently gained the attention of academics to replace traditional instruments for providing information for adaptive traffic signal controlling systems (TSCSs). Meanwhile, the suggestions of VANET-based TSCS approaches have some weaknesses: (1) imperfect compatibility of signal timing algorithms with the obtained VANET-based data types, and (2) inefficient process of gathering and transmitting vehicle density information from the perspective of network quality of service (QoS). This paper proposes an approach that reduces the aforementioned problems and improves the performance of TSCS by decreasing the vehicle waiting time, and subsequently their pollutant emissions at intersections. To achieve these goals, a combination of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications is used. The V2V communication scheme incorporates the procedure of density calculation of vehicles in clusters, and V2I communication is employed to transfer the computed density information and prioritized movements information to the road side traffic controller. The main traffic input for applying traffic assessment in this approach is the queue length of vehicle clusters at the intersections. The proposed approach is compared with one of the popular VANET-based related approaches called MC-DRIVE in addition to the traditional simple adaptive TSCS that uses the Webster method. The evaluation results show the superiority of the proposed approach based on both traffic and network QoS criteria.

Journal ArticleDOI
TL;DR: Analysis shows that the cryptographic algorithm does not rely on pairing operations and is much more efficient than other algorithms, which suits well to applications in environments where resources are constrained, such as wireless sensor networks and ad hoc networks.
Abstract: Hybrid signcryption is an important technique signcrypting bulk data using symmetric encryption. In this paper, we apply the technique of certificateless hybrid signcryption to an elliptic-curve cryptosystem, and construct a low-computation certificateless hybrid signcryption scheme. In the random oracle model, this scheme is proven to have indistinguishability against adaptive chosen-ciphertext attacks (IND-CCA2) under the elliptic-curve computation Diffie-Hellman assumption. Also, it has a strong existential unforgeability against adaptive chosen-message attacks (sUF-CMA) under the elliptic-curve discrete logarithm assumption. Analysis shows that the cryptographic algorithm does not rely on pairing operations and is much more efficient than other algorithms. In addition, it suits well to applications in environments where resources are constrained, such as wireless sensor networks and ad hoc networks.

Journal ArticleDOI
TL;DR: To address TSP effectively, three improvements are proposed in this paper to improve FOA: the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA, and an elimination mechanism is added to FOA to increase the diversity.
Abstract: The traveling salesman problem (TSP), a typical non-deterministic polynomial (NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm (FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimi-zation precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.

Journal ArticleDOI
TL;DR: A hybrid optimization approach combining a particle swarm algorithm, a genetic algorithm, and a heuristic interleaving algorithm is proposed for scheduling tasks in the multifunction phased array radar, which is more robust and efficient than existing algorithms.
Abstract: A hybrid optimization approach combining a particle swarm algorithm, a genetic algorithm, and a heuristic inter-leaving algorithm is proposed for scheduling tasks in the multifunction phased array radar. By optimizing parameters using chaos theory, designing the dynamic inertia weight for the particle swarm algorithm as well as introducing crossover operation and mutation operation of the genetic algorithm, both the efficiency and exploration ability of the hybrid algorithm are improved. Under the frame of the intelligence algorithm, the heuristic interleaving scheduling algorithm is presented to further use the time resource of the task waiting duration. A large-scale simulation demonstrates that the proposed algorithm is more robust and efficient than existing algorithms.

Journal ArticleDOI
TL;DR: The authors concluded that integrating data-driven machine learning with human knowledge can effectively lead to explainable, robust, and general AI.
Abstract: With the ever-growing popularization of the Internet, universal existence of sensors, emergence of big data, development of e-commerce, rise of the information community, and interconnection and fusion of data and knowledge in human society, physical space, and cyberspace, the information environment surrounding artificial intelligence (AI) development has changed profoundly, leading to a new evolutionary stage: AI 2.0. The emergence of new technologies also promotes AI to a new stage (Pan, 2016). The next-generation AI, namely AI 2.0, is a more explainable, robust, open, and general AI with the following attractive merits: It effectively integrates data-driven machine learning approaches (bottom-up) with knowledge-guided methods (top-down). In addition, it can employ data with different modalities (e.g., visual, auditory, and natural language processing) to perform cross-media learning and inference. Furthermore, there will be a step from the pursuit of an intelligent machine to the hybridaugmented intelligence (i.e., high-level man-machine collaboration and fusion). AI 2.0 will also promote crowd-based intelligence and autonomous-intelligent systems. In the next decades, AI2.0 will probably achieve remarkable progress in aforementioned trends, and therefore significantly change our cities, products, services, economics, environments, even how we advance our society. This special issue aims at reporting recent re-thinking of AI 2.0 from aforementioned aspects as well as practical methodologies, efficient implementations, and applications of AI 2.0. The papers in this special issue can be categorized into two groups. The first group consists of six review papers and the second group five research papers. In the first group, Zhuang et al. (2017) reviewed recent emerging theoretical and technological advances of AI in big data settings. The authors concluded that integrating data-driven machine learning with human knowledge (common priors or implicit intuitions) can effectively lead to explainable, robust, and general AI. Li W et al. (2017) described the concepts of crowd intelligence, and explained its relationship to the existing related concepts, e.g., crowdsourcing and human computation. In addition, the authors introduced four categories of representative crowd intelligence platforms. Peng et al. (2017) presented approaches, advances, and future directions in cross-media analysis and reasoning. This paper covers cross-media representation, mining, reasoning, and cross-media knowledge evolution. Tian et al. (2017) reviewed the state-of-the-art research of the perception in terms of visual perception, auditory perception, and speech perception. It also covered perceptual information processing and learning engines. Zhang et al. (2017) introduced the trends in the development of intelligent unmanned autonomous systems. It covered unmanned vehicles, unmanned aerial vehicles, service robots, space robots, marine robots, and unmanned Editorial: Frontiers of Information Technology & Electronic Engineering www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: jzus@zju.edu.cn

Journal ArticleDOI
TL;DR: Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines.
Abstract: Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines.

Journal ArticleDOI
TL;DR: The modified model is presented to study the impact of following behavior on the process of lane formation, the conflict, the number of lanes formed, and the traffic efficiency in the simulations.
Abstract: A new force is introduced in the social force model (SFM) for computing following behavior in pedestrian counterflow, whereby an individual tries to approach others in the same direction to avoid conflicts with pedestrians from the opposite direction. The force, like a kind of gravitation, is modeled based on the movement state and visual field of the pedestrian, and is added to the classical SFM. The modified model is presented to study the impact of following behavior on the process of lane formation, the conflict, the number of lanes formed, and the traffic efficiency in the simulations. Simulation results show that the following behavior has a significant effect on the phenomenon of lane formation and the traffic efficiency.