scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Cancer Research in 2011"


Journal ArticleDOI
TL;DR: The existence and high frequency of these C TCs coexpressing epithelial, mesenchymal, and stem cell markers in patients with progressive metastases has important implications for the application and interpretation of approved methods to detect CTCs.
Abstract: During cancer progression malignant cells undergo epithelial-mesenchymal transitions (EMTs) and mesenchymal-epithelial transitions (METs) as part of a broad invasion and metastasis program. We previously observed MET events among lung metastases in a preclinical model of prostate adenocarcinoma that suggested a relationship between epithelial plasticity and metastatic spread. We thus sought to translate these findings into clinical evidence by examining the existence of EMT in circulating tumor cells (CTCs) from patients with progressive metastatic solid tumors, with a focus on men with castration-resistant prostate cancer (CRPC) and women with metastatic breast cancer (BC). We show that the majority (>80%) of these CTCs in patients with metastatic CRPC co-express epithelial proteins such as EpCAM, CK, and E-cadherin, mesenchymal proteins, including vimentin, N-cadherin, and O-cadherin, and the stem cell marker CD133. Equally, we find that over 75% of CTCs from women with metastatic BC co-express cytokeratin, vimentin, and N-cadherin. The existence and high frequency of these CTCs co-expressing epithelial, mesenchymal, and stem-cell markers in patients with progressive metastases has important implications for the application and interpretation of approved methods to detect CTCs.

628 citations


Journal ArticleDOI
TL;DR: A novel function for IL-6 is shown in mediating EMT in head and neck tumor cells and increasing their metastatic potential in a SCID mouse xenograft model.
Abstract: Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions and cell polarity, resulting in the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process in head and neck cancers are poorly understood. Increasing evidence suggests that tumor microenvironment plays an important role in promoting EMT in tumor cells. We have previously shown that head and neck tumors exhibit significantly higher Bcl-2 expression in tumor-associated endothelial cells and overexpression of Bcl-2 alone in tumor-associated endothelial cells was sufficient to enhance tumor metastasis of oral squamous cell carcinoma in a SCID mouse model. In this study, we show that endothelial cells expressing Bcl-2 (EC-Bcl-2), when co-cultured with head and neck tumor cells (CAL27), significantly enhance EMT-related changes in tumor cells predominantly by the secretion of IL-6. Treatment with recombinant IL-6 or stable IL-6 overexpression in CAL27 cells or immortalized oral epithelial cells (IOE) significantly induced the expression of mesenchymal marker, vimentin, while repressing E-cadherin expression via the JAK/STAT3/Snail signaling pathway. These EMT-related changes were further associated with enhanced tumor and IOE cell scattering and motility. STAT3 knock-down significantly reversed IL-6-mediated tumor and IOE cell motility by inhibiting FAK activation. Furthermore, tumor cells overexpressing IL-6 showed marked increase in lymph node and lung metastasis in a SCID mouse xenograft model. Taken together, these results demonstrate a novel function for IL-6 in mediating EMT in head and neck tumor cells and increasing their metastatic potential.

420 citations


Journal ArticleDOI
TL;DR: Accumulating evidence from experimental studies that directly supports the role of MET in cancer metastasis is summarized, and the main mechanisms that regulate MET or reverse EMT in carcinomas are analyzed.
Abstract: Cancer metastasis consists of a sequential series of events, and the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are recognized as critical events for metastasis of carcinomas. A current area of focus is the histopathological similarity between primary and metastatic tumors, and MET at sites of metastases has been postulated to be part of the process of metastatic tumor formation. Here, we summarize accumulating evidence from experimental studies that directly supports the role of MET in cancer metastasis, and we analyze the main mechanisms that regulate MET or reverse EMT in carcinomas. Given the critical role of MET in metastatic tumor formation, the potential to effectively target the MET process at sites of metastasis offers new hope for inhibiting metastatic tumor formation.

389 citations


Journal ArticleDOI
TL;DR: Findings indicate a new regulatory mode, namely, specific miRNA, which is activated by its upstream transcription factor, could suppress its direct targets and lead to tumor invasion and metastasis.
Abstract: Traditional research modes aim to find cancer-specific single therapeutic target. Recently, emerging evidence suggested that some micro-RNAs (miRNA) can function as oncogenes or tumor suppressors. miRNAs are single-stranded, small noncoding RNA genes that can regulate hundreds of downstream target genes. In this study, we evaluated the miRNA expression patterns in gastric carcinoma and the specific role of miR-223 in gastric cancer metastasis. miRNA expression signature was first analyzed by real-time PCR on 10 paired gastric carcinomas and confirmed in another 20 paired gastric carcinoma tissues. With the 2-fold expression difference as a cutoff level, we identified 22 differential expressed mature miRNAs. Sixteen miRNAs were upregulated in gastric carcinoma, including miR-223, miR-21, miR-23b, miR-222, miR-25, miR-23a, miR-221, miR-107, miR-103, miR-99a, miR-100, miR-125b, miR-92, miR-146a, miR-214 and miR-191, and six miRNAs were downregulated in gastric carcinoma, including let-7a, miR-126, miR-210, miR-181b, miR-197, and miR-30aa-5p. After examining these miRNAs in several human gastric originated cell lines, we found that miR-223 is overexpressed only in metastatic gastric cancer cells and stimulated nonmetastatic gastric cancer cells migration and invasion. Mechanistically, miR-223, induced by the transcription factor Twist, posttranscriptionally downregulates EPB41L3 expression by directly targeting its 3'-untranslated regions. Significantly, overexpression of miR-223 in primary gastric carcinomas is associated with poor metastasis-free survival. These findings indicate a new regulatory mode, namely, specific miRNA, which is activated by its upstream transcription factor, could suppress its direct targets and lead to tumor invasion and metastasis.

345 citations


Journal ArticleDOI
TL;DR: Evidence is presented that S100A8/A9 interact with RAGE and carboxylated glycans on colon tumor cells and promote activation of MAPK and NF-κB signaling pathways, revealing a novel role for myeloid-derived S 100A8-A9 in activating specific downstream genes associated with tumorigenesis and in promoting tumor growth and metastasis.
Abstract: The tumor microenvironment plays an important role in modulating tumor progression. We earlier showed that S100A8/A9 proteins secreted by myeloid-derived suppressor cells (MDSC) present within tumors and metastatic sites promote an autocrine pathway for accumulation of MDSC. In a mouse model of colitis-associated colon cancer, we also showed that S100A8/A9 positive cells accumulate in all regions of dysplasia and adenoma. Here we present evidence that S100A8/A9 interact with RAGE and carboxylated glycans on colon tumor cells and promote activation of MAPK and NF-κB signaling pathways. Comparison of gene expression profiles of S100A8/A9-activated colon tumor cells versus unactivated cells led us to identify a small cohort of genes upregulated in activated cells, including Cxcl1, Ccl5 and Ccl7, Slc39a10, Lcn2, Zc3h12a, Enpp2 and other genes, whose products promote leukocyte recruitment, angiogenesis, tumor migration, wound healing, and formation of premetastatic niches in distal metastatic organs. Consistent with this observation, in murine colon tumor models we found that chemokines were up-regulated in tumors, and elevated in sera of tumor-bearing wild-type mice. Mice lacking S100A9 showed significantly reduced tumor incidence, growth and metastasis, reduced chemokine levels, and reduced infiltration of CD11b+Gr1+ cells within tumors and premetastatic organs. Studies using bone marrow chimeric mice revealed that S100A8/A9 expression on myeloid cells is essential for development of colon tumors. Our results thus reveal a novel role for myeloid-derived S100A8/A9 in activating specific downstream genes associated with tumorigenesis and in promoting tumor growth and metastasis.

313 citations


Journal ArticleDOI
TL;DR: The data support the rationale that suppression of mutant p53 levels in vivo in established cancers might achieve clinically significant effects.
Abstract: The tight control of wild-type p53 by mainly MDM2 in normal cells is permanently lost in tumors harboring mutant p53, which exhibit dramatic constitutive p53 hyperstabilization that far exceeds that of wild-type p53 tumors. Importantly, mutant p53 hyperstabilization is critical for oncogenic gain of function of mutant p53 in vivo. Current insight into the mechanism of this dysregulation is fragmentary and largely derived from ectopically constructed cell systems. Importantly, mutant p53 knock-in mice established that normal mutant p53 tissues have sufficient enzymatic reserves in MDM2 and other E3 ligases to maintain full control of mutant p53. We find that in human cancer cells, endogenous mutant p53, despite its ability to interact with MDM2, suffers from a profound lack of ubiquitination as the root of its degradation defect. In contrast to wild-type p53, the many mutant p53 proteins which are conformationally aberrant are engaged in complexes with the HSP90 chaperone machinery to prevent its aggregation. In contrast to wild-type p53 cancer cells, we show that in mutant p53 cancer cells, this HSP90 interaction blocks the endogenous MDM2 and CHIP (carboxy-terminus of Hsp70-interacting protein) E3 ligase activity. Interference with HSP90 either by RNA interference against HSF1, the transcriptional regulator of the HSP90 pathway, or by direct knockdown of Hsp90 protein or by pharmacologic inhibition of Hsp90 activity with 17AAG (17-allylamino-17-demethoxygeldanamycin) destroys the complex, liberates mutant p53, and reactivates endogenous MDM2 and CHIP to degrade mutant p53. Of note, 17AAG induces a stronger viability loss in mutant p53 than in wild-type p53 cancer cells. Our data support the rationale that suppression of mutant p53 levels in vivo in established cancers might achieve clinically significant effects.

244 citations


Journal ArticleDOI
TL;DR: This review attempts to unify the literature implicating CD44 in both tumor promotion and suppression, and explain its dualistic nature.
Abstract: CD44 has been the subject of extensive research for more than 3 decades because of its role in breast cancer, in addition to many physiological processes, but interestingly, conflicting data implicate CD44 in both tumor suppression and tumor promotion. CD44 has been shown to promote protumorigenic signaling and advance the metastatic cascade. On the other hand, CD44 has been shown to suppress growth and metastasis. Histopathological studies of human breast cancer have correlated CD44 expression with both favorable and unfavorable clinical outcomes. In recent years, CD44 has garnered significant attention because of its utility as a stem cell marker and has surfaced as a potential therapeutic target, necessitating a greater understanding of CD44 in breast cancer. In this review, we attempt to unify the literature implicating CD44 in both tumor promotion and suppression, and explain its dualistic nature.

235 citations


Journal ArticleDOI
TL;DR: The results suggest that desaturated fatty acids are required for tumor cell survival and that SCD may represent a viable target for the development of novel agents for cancer therapy.
Abstract: Emerging literature suggests that metabolic pathways play an important role in the maintenance and progression of human cancers. In particular, recent studies have implicated lipid biosynthesis and desaturation as a requirement for tumor cell survival. In the studies reported here, we aimed to understand whether tumor cells require the activity of either human isoform of stearoyl-CoA-desaturase (SCD1 or SCD5) for survival. Inhibition of SCD1 by siRNA or a small molecule antagonist results in strong induction of apoptosis and growth inhibition, when tumor cells are cultured in reduced (2%) serum conditions, but has little impact on cells cultured in 10% serum. Depletion of SCD5 had minimal effects on cell growth or apoptosis. Consistent with the observed dependence on SCD1, but not SCD5, levels of SCD1 protein increased in response to decreasing serum levels. Both induction of SCD1 protein and sensitivity to growth inhibition by SCD1 inhibition could be reversed by supplementing growth media with unsaturated fatty acids, the product of the enzymatic reaction catalyzed by SCD1. Transcription profiling of cells treated with an SCD inhibitor revealed strong induction of markers of endoplasmic reticulum stress. Underscoring its importance in cancer, SCD1 protein was found to be highly expressed in a large percentage of human cancer specimens. SCD inhibition resulted in tumor growth delay in a human gastric cancer xenograft model. Altogether, these results suggest that desaturated fatty acids are required for tumor cell survival and that SCD may represent a viable target for the development of novel agents for cancer therapy.

222 citations


Journal ArticleDOI
TL;DR: The data identify the miR-15 andmiR-16 families as novel transcriptional targets of E2F, which, in turn, modulates E1F activity and cell-cycle progression.
Abstract: MicroRNAs (miR) are small noncoding RNA molecules that have recently emerged as critical regulators of gene expression and are often deregulated in cancer. In particular, miRs encoded by the miR-15a, miR-16-1 cluster seem to act as tumor suppressors. Here, we evidence that the miR-15a, miR-16-1 cluster and related miR-15b, miR-16-2 cluster comprise miRs regulated by E2F1, a pivotal transcription factor that can induce both proliferation and cell death. E2F1 is a critical downstream target of the tumor suppressor retinoblastoma (RB). The RB pathway is often inactivated in human tumors resulting in deregulated E2F activity. We show that expression levels of the 4 mature miRs, miR-15a, miR-16-1 and miR-15b, miR-16-2, as well as their precursor pri-miRNAs, are elevated upon activation of ectopic E2F1. Moreover, activation of endogenous E2Fs upregulates expression of these miRs and endogenous E2F1 binds their respective promoters. Importantly, we corroborate that miR-15a/b inhibits expression of cyclin E, the latter a key direct transcriptional target of E2F pivotal for the G(1)/S transition, raising the possibility that E2F1, miR-15, and cyclin E constitute a feed-forward loop that modulates E2F activity and cell-cycle progression. In support of this, ectopic expression of miR-15 inhibits the G(1)/S transition, and, conversely, inhibition of miR-15 expression enhances E2F1-induced upregulation of cyclin E1 levels. Furthermore, inhibition of both miR-15 and miR-16 enhances E2F1-induced G(1)/S transition. In summary, our data identify the miR-15 and miR-16 families as novel transcriptional targets of E2F, which, in turn, modulates E2F activity.

169 citations


Journal ArticleDOI
TL;DR: It is concluded that miR-200 suppresses lung tumorigenesis by targeting Flt1, which is part of a gene expression signature that predicts poor prognosis in lung cancer patients.
Abstract: The microRNA-200 (miR-200) family is part of a gene expression signature that predicts poor prognosis in lung cancer patients. In a mouse model of K-ras/p53-mutant lung adenocarcinoma, miR-200 levels are suppressed in metastasis-prone tumor cells, and forced miR-200 expression inhibits tumor growth and metastasis, but the miR-200 target genes that drive lung tumorigenesis have not been fully elucidated. Here, we scanned the genome for putative miR-200 binding sites and found them in the 3'-untranslated region (3'-UTR) of 35 genes that are amplified in human cancer. Mining of a database of resected human lung adenocarcinomas revealed that the levels of one of these genes, Flt1/VEGFR1, correlate inversely with duration of survival. Forced miR-200 expression suppressed Flt1 levels in metastasis-prone lung adenocarcinoma cells derived from K-ras/p53-mutant mice, and negatively regulated the Flt1 3'-UTR in reporter assays. Cancer-associated fibroblasts (CAFs) isolated from murine lung adenocarcinomas secreted abundant VEGF and enhanced tumor cell invasion in coculture studies. CAF-induced tumor cell invasion was abrogated by VEGF neutralization or Flt1 knockdown in tumor cells. Flt1 knockdown decreased the growth and metastasis of tumor cells in syngeneic mice. We conclude that miR-200 suppresses lung tumorigenesis by targeting Flt1.

168 citations


Journal ArticleDOI
TL;DR: A novel mechanism whereby EZH2 activation during tumor progression represses p21, leading to suppression of cellular senescence and enhanced tumorigenicity is described.
Abstract: Polycomb group (PcG) proteins such as Enhancer of zeste homolog 2 (EZH2) are epigenetic transcriptional repressors that function through recognition and modification of histone methylation and chromatin structure. Targets of PcG include cell cycle regulatory proteins which govern cell cycle progression and cellular senescence. Senescence is a characteristic of melanocytic nevi, benign melanocytic proliferations that can be precursors of malignant melanoma. In this study, we report that EZH2, which we find absent in melanocytic nevi but expressed in many or most metastatic melanoma cells, functionally suppresses the senescent state in human melanoma cells. EZH2 depletion in melanoma cells inhibits cell proliferation, restores features of a cellular senescence phenotype, and inhibits growth of melanoma xenografts in vivo. p21/CDKN1A is activated upon EZH2 knockdown in a p53-independent manner and contributes substantially to cell cycle arrest and induction of a senescence phenotype. EZH2 depletion removes histone deacetylase 1 (HDAC1) from the CDKN1A transcriptional start site and downstream region, enhancing histone 3 acetylation globally and at CDKN1A. This results in recruitment of RNA polymerase II, leading to p21/CDKN1A activation. Depletion of EZH2 synergistically activates p21/CDKN1A expression in combination with the HDAC inhibitor trichostatin A. Since melanomas often retain wild-type p53 function activating p21, our findings describe a novel mechanism whereby EZH2 activation during tumor progression represses p21, leading to suppression of cellular senescence and enhanced tumorigenicity.

Journal ArticleDOI
TL;DR: It is shown, in both nontumorigenic and tumorigenic epithelial cancer cells, that Snail1 is uniquely required for EMT initiation, whereas Twist1 is required to maintain late EMT.
Abstract: Epithelial-Mesenchymal Transition (EMT) is a normal developmental program that is considered to also play an important role in cancer metastasis. Ultimate inducers of EMT are transcriptional repressors that individually can induce experimental EMT, yet in many cells, particularly cancer cells, multiple inducers are expressed simultaneously. Why, and if and how they interact to regulate EMT is unanswered. Using RNAi technology to effect protein knockdown and avoid potential over-expression artifact coupled with transient TGFβ treatment to better mimic in vivo conditions we show, in both non-tumorigenic and tumorigenic epithelial cancer cells, that Snail1 is uniquely required for EMT initiation, while Twist1 is required to maintain late EMT. Twist1, present in resting epithelial cells, is dispensable for EMT initiation. Mechanistically, in response to transient TGFβ treatment, transient Snail1 expression represses Twist1 transcription directly, which is subsequently upregulated, as Snail1 levels decrease, to sustain E-cadherin downregulation and growth arrest of EMT. Persistent Twist1 expression is associated with a p38 and ERK signal feedback loop that sustains growth-inhibitory signals characteristic of quiescent micrometastatic tumors. This Snail1-Twist1 temporal and spatial cooperation was also observed in vivo during human breast cancer progression to metastasis. Twist1 level, but not Snail1 level, and Twist1:Snail1 ratio in disseminated micrometastatic bone marrow tumor cells was found to correlate with survival and treatment resistance, and is highly predictive of metastatic or recurrent disease.

Journal ArticleDOI
TL;DR: This study suggests that miR-138 is an important regulator of genomic stability and a potential therapeutic agent to improve the efficacy of radiotherapy and chemotherapy with DNA-damaging agents.
Abstract: Precise regulation of DNA damage response is crucial for cellular survival after DNA damage, and its abrogation often results in genomic instability in cancer. Phosphorylated histone H2AX (γH2AX) forms nuclear foci at sites of DNA damage and facilitates DNA damage response and repair. MicroRNAs are short, non-protein-encoding RNA molecules, which post-transcriptionally regulate gene expression by repressing translation of and/or degrading mRNA. How microRNAs modulate DNA damage response is largely unknown. In this study, we developed a cell-based screening assay utilizing ionizing radiation-induced γH2AX foci formation in a human osteosarcoma cell line, U2OS, as the readout. By screening a library of human microRNA mimics, we identified several microRNAs that inhibited γH2AX foci formation. Among them, miR-138 directly targeted the histone H2AX 3′-UTR, reduced histone H2AX expression and induced chromosomal instability after DNA damage. Overexpression of miR-138 inhibited homologous recombination and enhanced cellular sensitivity to multiple DNA damaging agents (cisplatin, camptothecin, and ionizing radiation). Reintroduction of histone H2AX in miR-138 overexpressing cells attenuated miR-138-mediated sensitization to cisplatin and camptothecin. Our study suggests that miR-138 is an important regulator of genomic stability and a potential therapeutic agent to improve the efficacy of radiotherapy and chemotherapy with DNA damaging agents.

Journal ArticleDOI
TL;DR: The data suggest that the CSC phenotype contributes to the development of brain metastases from breast cancer, and this may arise in part from increased Notch activity.
Abstract: Brain metastasis from breast cancer is an increasingly important clinical problem. Here we assessed the role of CD44 hi /CD24 lo cells and pathways that regulate them, in an experimental model of brain metastasis. Notch signaling (mediated by g-secretase) has been shown to contribute to maintenance of the cancer stem cell (CSC) phenotype. Cells sorted for a reduced stem-like phenotype had a reduced ability to form brain metastases compared with unsorted or CD44 hi /CD24 lo cells (P < 0.05; Kruskal–Wallis). To assess the effect of g-secretase inhibition, cells were cultured with DAPT and the CD44/CD24 phenotypes quantified. 231-BR cells with a CD44 hi /CD24 lo phenotype was reduced by about 15% in cells treated with DAPT compared with DMSOtreated or untreated cells (P ¼ 0.001, ANOVA). In vivo, mice treated with DAPT developed significantly fewer micro- and macrometastases compared with vehicle treated or untreated mice (P ¼ 0.011, Kruskal–Wallis). Notch1 knockdown reduced the expression of CD44 hi /CD24 lo phenotype by about 20%. In vitro, Notch1 shRNA resulted in a reduction in cellular growth at 24, 48, and 72 hours time points (P ¼ 0.033, P ¼ 0.002, and P ¼ 0.009, ANOVA) and about 60% reduction in Matrigel invasion was observed (P < 0.001, ANOVA). Cells transfected with shNotch1 formed significantly fewer macrometastases and micrometastases compared with scrambled shRNA or untransfected cells (P < 0.001; Kruskal–Wallis). These data suggest that the CSC phenotype contributes to the development of brain metastases from breast cancer, and this may arise in part from increased Notch activity. Mol Cancer Res; 9(7); 1–11. � 2011 AACR.

Journal ArticleDOI
TL;DR: The results suggest that a3 V-ATPase promotes distant metastasis of B16-F10 cells by creating acidic environments via proton secretion and that inhibition of the development of cancer-associated acidic environments by suppressing a3V-ATpase could be a novel therapeutic approach for the treatment of cancer metastasis.
Abstract: Accumulating evidence indicates that the acidic microenvironments critically influence malignant behaviors of cancer including invasiveness, metastasis, and chemoresistance. Because the vacuolar-type H(+)-ATPase (V-ATPase) has been shown to cause extracellular acidification by pumping protons, we studied the role of V-ATPase in distant metastasis. Real-time PCR analysis revealed that the high-metastatic B16-F10 melanoma cells strongly expressed the a3 isoform V-ATPase compared to the low-metastatic B16 parental cells. Consistent with this, B16-F10 cells created acidic environments in lung metastases by acridine orange staining and strong a3 V-ATPase expression in bone metastases by immunohistochemistry. Immunocytochemical analysis showed B16-F10 cells expressed a3 V-ATPase not only in cytoplasm but also plasma membrane, whereas B16 parental cells exhibited its expression only in cytoplasm. Of note, knockdown of a3 V-ATPase suppressed invasiveness and migration with reduced MMP-2 and MMP-9 expression in B16-F10 cells and significantly decreased lung and bone metastases, despite that tumor growth was not altered. Importantly, administration of a specific V-ATPase a3 inhibitor FR167356 reduced bone metastasis of B16-F10 cells. These results suggest that a3 V-ATPase promotes distant metastasis of B16-F10 cells by creating acidic environments via proton secretion. Our results also suggest that inhibition of the development of cancer-associated acidic environments by suppressing a3 V-ATPase could be a novel therapeutic approach for the treatment of cancer metastasis.

Journal ArticleDOI
TL;DR: Evidence is presented that PES-mediated inhibition of HSP70 family proteins in tumor cells results in an impairment of the two major protein degradation systems, namely, the autophagy-lysosome system and the proteasome pathway.
Abstract: The evolutionarily conserved stress-inducible HSP70 molecular chaperone plays a central role in maintaining protein quality control in response to various forms of stress. Constitutively elevated HSP70 expression is a characteristic of many tumor cells and contributes to their survival. We recently identified the small-molecule 2-phenylethyenesulfonamide (PES) as a novel HSP70 inhibitor. Here we present evidence that PES-mediated inhibition of HSP70-family proteins in tumor cells results in an impairment of the two major protein degradation systems, namely the autophagy-lysosome system as well as the proteasome pathway. HSP70-family proteins work closely with the HSP90 molecular chaperone to maintain the stability and activities of their many client proteins and PES causes a disruption in the HSP70/HSP90 chaperone system. As a consequence, many cellular proteins, including known HSP70/HSP90 substrates, accumulate in detergent-insoluble cell fractions, indicative of aggregation and functional inactivation. Overall, PES simultaneously disrupts several cancer-critical survival pathways, supporting the idea of targeting HSP70 as a potential approach for cancer therapeutics.

Journal ArticleDOI
TL;DR: Findings reveal a HuR-dependent mechanism for cancer cell survival and sensitivity to chemotherapeutic drugs suggesting that HuR should be considered as a new therapeutic target.
Abstract: Posttranscriptional regulation is a critical control point for the expression of genes that promote or retard tumor growth. We previously found that the mRNA-binding protein, ELAV 1 (HuR), is upregulated in primary brain tumors and stabilizes growth factor mRNAs such as VEGF and IL-8. To better understand the role of HuR in brain tumor growth, we altered levels of HuR in glioma cells by short hairpin RNA or ectopic expression and measured tumor cell phenotype using in vitro and in vivo models. In HuR-silenced cells, we found a significant decrease in anchorage-independent growth and cell proliferation with a concomitant induction of apoptosis. Using an intracranial tumor model with primary glioblastoma cells, HuR silencing produced a significant decrease in tumor volume. In contrast, overexpression of HuR produced in vitro chemoresistance to standard glioma therapies. Because bcl-2 is abundantly expressed in glioma and associated with tumor growth and survival, we determined the impact of HuR on its regulation as a molecular validation to the cellular and animal studies. Using UV cross-linking and RNA immunoprecipitation, we show that HuR bound to the 3'-untranslated region of all bcl-2 family members. Silencing of HuR led to transcript destabilization and reduced protein expression. Polysome profiling indicated loss of HuR from the translational apparatus. In summary, these findings reveal a HuR-dependent mechanism for cancer cell survival and sensitivity to chemotherapeutic drugs suggesting that HuR should be considered as a new therapeutic target.

Journal ArticleDOI
TL;DR: Ethyl 2-((2,3-bis(nitrooxy)propyl)disulfanyl)benzoate is a novel nitric oxide (NO) chimera containing an nonsteroidal anti-inflammatory drug (NSAID) and NO moieties and also a disulfide pharmacophore that in itself exhibits cancer chemopreventive activity.
Abstract: Ethyl 2-((2,3-bis(nitrooxy)propyl)disulfanyl)benzoate (GT-094) is a novel NO chimera containing an NSAID and NO moieties and also a disulfide pharmacophore that in itself exhibits cancer chemopreventive activity. In this study, the effects and mechanism of action of GT-094 were investigated in RKO and SW480 colon cancer cells. GT-094 inhibited cell proliferation and induced apoptosis in both cell lines and this was accompanied by decreased mitochondrial membrane potential (MMP) and induction of reactive oxygen species (ROS), and these responses were reversed after cotreatment with the antioxidant glutathione. GT-094 also downregulated genes associated with cell growth [cyclin D1, hepatocyte growth factor receptor (c-Met), epidermal growth factor receptor (EGFR)], survival (bcl-2, survivin), and angiogenesis [vascular endothelial growth factor (VEGF) and its receptors (VEGFR1 and VEGFR2)]. Results of previous RNA interference studies in this laboratory has shown that these genes are regulated, in part, by specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 that are overexpressed in colon and other cancer cell lines and not surprisingly, GT-094 also decreased Sp1, Sp3 and Sp4 in colon cancer cells. GT-094-mediated repression of Sp and Sp-regulated gene products was due to downregulation of microRNA-27a (miR-27a) and induction of ZBTB10, an Sp repressor that is regulated by miR-27a in colon cancer cells. Moreover, the effects of GT-094 on Sp1, Sp3, Sp4, miR-27a and ZBTB10 were also inhibited by glutathione suggesting that the anticancer activity of GT-094 in colon cancer cells is due, in part, to activation of an ROS-miR-27a:ZBTB10-Sp transcription factor pathway.

Journal ArticleDOI
TL;DR: The results strongly suggest the underlying mechanism of CXCR4 promoting Tca8113 migration and invasion by regulating MMP-9 and M MP-13 expression perhaps via activation of the ERK signaling pathway.
Abstract: The increased migration and invasion of oral squamous cell carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. Although the chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1α, have been found to play an important role in tumor invasion, its precise role and potential underlying mechanisms remain largely unknown. In this study, we showed that knockdown of CXCR4 significantly decreased Tca8113 cells migration and invasion, accompanied with the reduction of MMP-9 and MMP-13 expression. Inhibition of ligand binding to CXCR4 by a specific antagonist TN14003, also led to reduced cancer cell migration and invasion. Because the degradation of the extracellular matrix and the basement membrane by proteases, such as matrix metalloproteinases (MMP) is critical for migration and invasion of cancer cells, we investigated the expression of several MMPs and found that the expression of functional MMP-9 and MMP-13 was selectively decreased in CXCR4 knockdown cells. More importantly, decreased cell migration and invasion of CXCR4 knockdown cells were completely rescued by exogenous expression of MMP-9 or MMP-13, indicating that the two MMPs are downstream targets of CXCR4-mediated signaling. Furthermore, we found the level of phosphorylated extracellular signal-regulated kinase (ERK) was significantly decreased in CXCR4-silenced cells, suggesting that ERK may be a potential mediator of CXCR4-regulated MMP-9 and MMP-13 expression in Tca8113 cells. Taken together, our results strongly suggest the underlying mechanism of CXCR4 promoting Tca8113 migration and invasion by regulating MMP-9 and MMP-13 expression perhaps via activation of the ERK signaling pathway.

Journal ArticleDOI
TL;DR: In primary samples of CaP, a direct correlation between reduction of SEC23A mRNA and overexpression of miR-375 but not ofMiRNAs is found, and it is shown that both miRNAs downregulate Sec23A protein expression when ectopically expressed in human 293T cells.
Abstract: Prostate carcinoma (CaP) is a leading cause of cancer-related death in men. We have previously determined the microRNA (miRNA) profile of primary CaP in comparison with nontumor prostate tissue. miRNAs are small, noncoding RNAs that inhibit protein synthesis on a posttranscriptional level by binding to the 3'-untranslated region (3'-UTR) of their target genes. In primary CaP tissue, we have previously found by miRNA sequencing that miR-375 and miR-200c were upregulated 9.1- and 4.5-fold, respectively. A computational analysis predicted the 3'-UTR of the SEC23A gene as a potential target for both miR-375 and miR-200c. Here, we show that the 3'-UTR of SEC23A mRNA is indeed a target for miR-375 and miR-200c and that both miRNAs downregulate Sec23A protein expression when ectopically expressed in human 293T cells. In primary samples of CaP, we found a direct correlation between reduction of SEC23A mRNA and overexpression of miR-375 but not of miR-200c. The reduced levels of Sec23A protein were inversely correlated to the increased amount of miR-375 in the LNCaP and DU145 CaP cell lines when compared with normal prostate fibroblasts. In primary CaP, we also detected decreased amounts of Sec23A protein when compared with corresponding normal prostate tissue. Ectopically overexpressed Sec23A in LNCaP and DU145 CaP cells significantly reduced the growth properties, indicating that Sec23A might play a role in the induction or growth of prostate carcinoma. Sec23A overexpression reduced cell growth but did not induce apoptosis, whereas inhibition of Sec23A stimulated cell proliferation.

Journal ArticleDOI
TL;DR: Western diet unmasks the tumor suppressor roles of these EGFR-regulated microRNAs that contribute to diet-promoted colonic tumorigenesis in murine models of colon cancer.
Abstract: Epidermal growth factor receptors (EGFR) contribute to colonic tumorigenesis in experimental models of colon cancer. We previously showed that EGFR was also required for colonic tumor promotion by Western diet. The goal of this study was to identify EGFR-regulated microRNAs that contribute to diet-promoted colonic tumorigenesis. Murine colonic tumors from Egfr(wt) and hypomorphic Egfr(wa2) mice were screened using micro RNA (miRNA) arrays and miR-143 and miR-145 changes confirmed by Northern, real-time PCR, and in situ analysis. Rodent and human sporadic and ulcerative colitis (UC)-associated colon cancers were examined for miR-143 and miR-145. Effects of EGFR on miR-143 and miR-145 expression were assessed in murine and human colonic cells and their putative targets examined in vitro and in vivo. miR-143 and miR-145 were readily detected in normal colonocytes and comparable in Egfr(wt) and Egfr(wa2) mice. These miRNAs were downregulated in azoxymethane and inflammation-associated colonic tumors from Egfr(wt) mice but upregulated in Egfr(wa2) tumors. They were also reduced in human sporadic and UC colon cancers. EGFR signals suppressed miR-143 and miR-145 in human and murine colonic cells. Transfected miR-143 and miR-145 inhibited HCT116 cell growth in vitro and in vivo and downregulated G(1) regulators, K-Ras, MYC, CCND2, cdk6, and E2F3, putative or established targets of these miRNAs. miRNA targets Ras and MYC were increased in colonic tumors from Egfr(wt) but not Egfr(wa2) mice fed a Western diet. EGFR suppresses miR-143 and miR-145 in murine models of colon cancer. Furthermore, Western diet unmasks the tumor suppressor roles of these EGFR-regulated miRNAs.

Journal ArticleDOI
TL;DR: It is found that transcription of HIF-2α was consistently increased by hypoxia, whereas transcription ofHIF-1α showed variable levels of repression, suggesting an important role of Hif-2 α in the regulation of tumor progression under chronic hypoxic conditions.
Abstract: The hypoxia-inducible transcription factors (HIF)-1α and -2α play a critical role in cellular response to hypoxia. Elevated HIF-α expression correlates with poor patient survival in a large number of cancers. Recent evidence suggests that HIF-2α appears to be preferentially expressed in neuronal tumor cells that exhibit cancer stem cell characteristics. These observations suggest that expression of HIF-1α and -2α is differentially regulated in the hypoxic tumor microenvironment. However, the underlying mechanisms remain to be fully investigated. In this study, we investigated the transcriptional regulation HIF-1α and -2α under different physiologically relevant hypoxic conditions. We found that transcription of HIF-2α was consistently increased by hypoxia, whereas transcription of HIF-1α showed variable levels of repression. Mechanistically, differential regulation of HIF-α transcription involved hypoxia-induced changes in acetylation of core histones H3 and H4 associated with the proximal promoters of the HIF-1α or HIF-2α gene. We also found that, although highly stable under acute hypoxia, HIF-1α and HIF-2α proteins become destabilized under chronic hypoxia. Our results have thus provided new mechanistic insights into the differential regulation of HIF-1α and -2α by the hypoxic tumor microenvironment. These findings also suggest an important role of HIF-2α in the regulation of tumor progression under chronic hypoxia.

Journal ArticleDOI
TL;DR: Exposure to metformin induces cell death in all but one line, MDA-MB-231, in a panel of breast cancer cell lines and is associated with a striking enlargement of mitochondria, indicating metformIn has cytotoxic effects on breast cancer cells through 2 independent pathways.
Abstract: There is substantial evidence that metformin, a drug used to treat type 2 diabetics, is potentially useful as a therapeutic agent for cancer. However, a better understanding of the molecular mechanisms through which metformin promotes cell cycle arrest and cell death of cancer cells is necessary. It will also be important to understand how the response of tumor cells differs from normal cells and why some tumor cells are resistant to the effects of metformin. We have found that exposure to metformin induces cell death in all but one line, MDA-MB-231, in a panel of breast cancer cell lines. MCF10A non-transformed breast epithelial cells were resistant to the cytotoxic effects of metformin, even after extended exposure to the drug. In sensitive lines, cell death was mediated by both apoptosis and a caspase-independent mechanism. The caspase-independent pathway involves activation of poly(ADP-ribose) polymerase (PARP) and correlates with enhanced synthesis of poly(ADP-ribose) and nuclear translocation of AIF, which plays an important role in mediating cell death. Metformin-induced PARP-dependent cell death is associated with a striking enlargement of mitochondria. Mitochondrial enlargement was observed in all sensitive breast cancer cell lines but not in non-transformed cells or resistant MDA-MB-231. Mitochondrial enlargement was prevented by inhibiting PARP activity or expression. A caspase inhibitor blocked metformin-induced apoptosis but did not affect PARP-dependent cell death or mitochondrial enlargement. Thus metformin has cytotoxic effects on breast cancer cells through two independent pathways. These findings will be pertinent to efforts directed at using metformin or related compounds for cancer therapy.

Journal ArticleDOI
TL;DR: In this article, RNA interference was used to assess the individual roles of SK1 and SK2 in tumor cell sphingolipid metabolism, proliferation, and migration/invasion.
Abstract: Sphingosine kinases (SK) regulate the balance between proapoptotic ceramides and mitogenic sphingosine-1-phosphate (S1P); however, the functions of the two isoenzymes (SK1 and SK2) in tumor cells are not well defined. Therefore, RNA interference was used to assess the individual roles of SK1 and SK2 in tumor cell sphingolipid metabolism, proliferation, and migration/invasion. Treatment of A498, Caki-1, or MDA-MB-231 cells with siRNAs specific for SK1 or SK2 effectively suppressed the expression of the target mRNA and protein. Ablation of SK1 did not affect mRNA or protein levels of SK2 and reduced intracellular levels of S1P while elevating ceramide levels. In contrast, ablation of SK2 elevated mRNA, protein, and activity levels of SK1 and increased cellular S1P levels. Interestingly, cell proliferation and migration/invasion were suppressed more by SK2-selective ablation than by SK1-selective ablation, showing that the increased S1P does not rescue these phenotypes. Similarly, exogenous S1P did not rescue the cells from the antiproliferative or antimigratory effects of the siRNAs. Consistent with these results, differential effects of SK1- and SK2-selective siRNAs on signaling proteins, including p53, p21, ERK1, ERK2, FAK, and VCAM1, indicate that SK1 and SK2 have only partially overlapping functions in tumor cells. Overall, these data indicate that loss of SK2 has stronger anticancer effects than does suppression of SK1. Consequently, selective inhibitors of SK2 may provide optimal targeting of this pathway in cancer chemotherapy.

Journal ArticleDOI
TL;DR: Comparisons between cocultures where cells were in direct contact and cocultURES where interaction was solely through soluble factors suggest that there is an important impact of direct cell-to-cell contact.
Abstract: Basal-like breast cancers have several well-characterized distinguishing molecular features, but most of these are features of the cancer cells themselves. The unique stromal-epithelial interactions, and more generally, microenvironmental features of Basal-like breast cancers have not been well characterized. To identify characteristic microenvironment features of Basal-like breast cancer we performed cocultures of several Basal-like breast cancer cell lines with fibroblasts and compared these to cocultures of Luminal breast cancer cell lines with fibroblasts. Interactions between Basal-like cancer cells and fibroblasts induced expression of numerous interleukins and chemokines, including IL-6, IL-8, CXCL1, CXCL3, and TGFbeta. Under the influence of fibroblasts, Basal-like breast cancer cell lines also showed increased migration in vitro. Migration was less pronounced for Luminal lines, but these lines were more likely to have altered proliferation. These differences were relevant to tumor biology in vivo, as the gene set that distinguished Luminal and Basal-like stromal interactions in coculture also distinguishes Basal-like from Luminal tumors with 98% accuracy in 10-fold CV and 100% accuracy in an independent test set. However, comparisons between cocultures where cells were in direct contact and cocultures where interaction was solely through soluble factors suggest that there is an important impact of direct cell-to-cell contact. The phenotypes and gene expression changes invoked by cancer cell interactions with fibroblasts support the microenvironment and cell-cell interactions as intrinsic features of breast cancer subtypes.

Journal ArticleDOI
TL;DR: Tissue hypoxia is particularly important in normal physiology to maintain the stem cell niche; but at the same time, hypoxic inhibition of an essential tumor suppressor response can theoretically contribute to cancer initiation.
Abstract: Cellular senescence has emerged as a biological response to two major pathophysiological states of our being: cancer and aging. In the course of the transformation of a normal cell to a cancerous cell, senescence is frequently induced to suppress tumor development. In aged individuals, senescence is found in cells that have exhausted their replication potential. The similarity in these responses suggests that understanding how senescence is mediated can provide insight into both cancer and aging. One environmental factor that is implicated in both of these states is tissue hypoxia, which increases with aging and can inhibit senescence. Hypoxia is particularly important in normal physiology to maintain the stem cell niche; but at the same time, hypoxic inhibition of an essential tumor suppressor response can theoretically contribute to cancer initiation.

Journal ArticleDOI
TL;DR: Using ccRCC-derived cell lines, it is shown that REDD1 upregulation in tumors is VHL dependent and that both Hif-1 and HIF-2 are, in a cell-type-dependent manner, recruited to, and essential for, REDD 1 induction.
Abstract: mTOR complex 1 (mTORC1) is implicated in cell growth control and is extensively regulated. We previously reported that in response to hypoxia, mTORC1 is inhibited by the protein regulated in development and DNA damage response 1 (REDD1). REDD1 is upregulated by hypoxia-inducible factor (HIF)-1, and forced REDD1 expression is sufficient to inhibit mTORC1. REDD1-induced mTORC1 inhibition is dependent on a protein complex formed by the tuberous sclerosis complex (TSC)1 and 2 (TSC2) proteins. In clear-cell renal cell carcinoma (ccRCC), the von Hippel-Lindau (VHL) gene is frequently inactivated leading to constitutive activation of HIF-2 and/or HIF-1, which may be expected to upregulate REDD1 and inhibit mTORC1. However, mTORC1 is frequently activated in ccRCC, and mTORC1 inhibitors are effective against this tumor type; a paradox herein examined. REDD1 was upregulated in VHL-deficient ccRCC by in silico microarray analyses, as well as by quantitative real-time PCR, Western blot, and immunohistochemistry. Vhl disruption in a mouse model was sufficient to induce Redd1. Using ccRCC-derived cell lines, we show that REDD1 upregulation in tumors is VHL dependent and that both HIF-1 and HIF-2 are, in a cell-type-dependent manner, recruited to, and essential for, REDD1 induction. Interestingly, whereas mTORC1 is responsive to REDD1 in some tumors, strategies have evolved in others, such as mutations disrupting TSC1, to subvert mTORC1 inhibition by REDD1. Sequencing analyses of 77 ccRCCs for mutations in TSC1, TSC2, and REDD1, using PTEN as a reference, implicate the TSC1 gene, and possibly REDD1, as tumor suppressors in sporadic ccRCC. Understanding how ccRCCs become refractory to REDD1-induced mTORC1 inhibition should shed light into the development of ccRCC and may aid in patient selection for molecular-targeted therapies. Mol Cancer Res; 9(9); 1255–65. �2011 AACR.

Journal ArticleDOI
TL;DR: The role of p53 in tissue protection is not well understood as mentioned in this paper, but it is known that p53 blocks apoptosis in the intestinal crypts following irradiation, but paradoxically accelerates gastrointestinal (GI) damage and death.
Abstract: The role of p53 in tissue protection is not well understood. Loss of p53 blocks apoptosis in the intestinal crypts following irradiation, but paradoxically accelerates gastrointestinal (GI) damage and death. PUMA and p21 are the major mediators of p53-dependent apoptosis and cell cycle checkpoints, respectively. To better understand these two arms of p53 response in radiation-induced GI damage, we compared animal survival, as well as apoptosis, proliferation, cell cycle progression, DNA damage, and regeneration in the crypts of WT, p53 KO, PUMA KO, p21 KO, and p21/PUMA double KO (DKO) mice in a whole body irradiation model. Deficiency in p53 or p21 led to shortened survival but accelerated crypt regeneration associated with massive non-apoptotic cell death. Non-apoptotic cell death is characterized by aberrant cell cycle progression, persistent DNA damage, rampant replication stress and genome instability. PUMA deficiency alone enhanced survival and crypt regeneration by blocking apoptosis, but failed to rescue delayed non-apoptotic crypt death or shortened survival in p21 KO mice. These studies help better understand p53 functions in tissue injury and regeneration, and potentially improve strategies to protect or mitigate intestinal damage induced by radiation.

Journal ArticleDOI
TL;DR: It is shown that hypoxia induces the expression of Snail via HIF, and HIF regulates Snail activation and subsequent cell migration.
Abstract: The transcriptional inhibitor Snail is a critical regulator for epithelial-mesenchymal transition (EMT). Although low oxygen induces Snail transcription, thereby stimulating EMT, a direct role of hypoxia-inducible factor (HIF) in this process remains to be demonstrated. Here we show that hypoxia induces the expression of Snail via HIF. In silico analysis identified a potential hypoxia-response element (HRE) close to the minimal promoter of the human and mouse genome of the snail gene. Gel shift assays demonstrated that a specific hypoxia-inducible complex is formed with the putative HRE and that the complex contains HIF proteins. ChIP assays confirmed the interaction of HIF proteins with the putative HRE in vivo. Reporter gene analyses showed that the putative HRE responds to hypoxia in its natural position as well as in front of a heterologous promoter and that the HRE is directly activated by HIF-1α or HIF-2α. HIF knockdown with siRNA at 2% oxygen and overexpression of an oxygen-insensitive HIF (HIF-ΔODD) mutant at 21% oxygen showed that HIF regulates Snail activation and subsequent cell migration. Our findings identify snail as a HIF target gene and provide novel insights into the regulation of snail and hypoxia-induced EMT.

Journal ArticleDOI
TL;DR: The data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB–dependent gene expression by bortzomib is gene specific and depends on the subunit composition of NF -κB dimers recruited to NF- κB–responsive promoters.
Abstract: Cutaneous T cell lymphoma (CTCL) is characterized by constitutive activation of NFκB, which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NFκB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NFκB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NFκB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα, which then associates with NFκB p65 and p50 in the nucleus and inhibits NFκB DNA binding activity. Surprisingly, however, while expression of NFκB-dependent anti-apoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NFκB p65/50 heterodimers, while Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NFκB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NFκB dimers recruited to NFκB-responsive promoters.