scispace - formally typeset
Search or ask a question

Showing papers in "npj Regenerative Medicine in 2019"


Journal ArticleDOI
TL;DR: The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.
Abstract: The terms MSC and MSCs have become the preferred acronym to describe a cell and a cell population of multipotential stem/progenitor cells commonly referred to as mesenchymal stem cells, multipotential stromal cells, mesenchymal stromal cells, and mesenchymal progenitor cells. The MSCs can differentiate to important lineages under defined conditions in vitro and in limited situations after implantation in vivo. MSCs were isolated and described about 30 years ago and now there are over 55,000 publications on MSCs readily available. Here, we have focused on human MSCs whenever possible. The MSCs have broad anti-inflammatory and immune-modulatory properties. At present, these provide the greatest focus of human MSCs in clinical testing; however, the properties of cultured MSCs in vitro suggest they can have broader applications. The medical utility of MSCs continues to be investigated in over 950 clinical trials. There has been much progress in understanding MSCs over the years, and there is a strong foundation for future scientific research and clinical applications, but also some important questions remain to be answered. Developing further methods to understand and unlock MSC potential through intracellular and intercellular signaling, biomedical engineering, delivery methods and patient selection should all provide substantial advancements in the coming years and greater clinical opportunities. The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.

975 citations


Journal ArticleDOI
TL;DR: HWJSCs secretome is suggested as the most potent hMSC source for inflammation-mediated angiogenesis induction, while the potency of hADSC secretomes was lowest.
Abstract: Human mesenchymal stromal cell (hMSC) secretomes have shown to influence the microenvironment upon injury, promoting cytoprotection, angiogenesis, and tissue repair. The angiogenic potential is of particular interest for the treatment of ischemic diseases. Interestingly, hMSC secretomes isolated from different tissue sources have shown dissimilarities with respect to their angiogenic profile. This study compares angiogenesis of hMSC secretomes from adipose tissue (hADSCs), bone marrow (hBMSCs), and umbilical cord Wharton’s jelly (hWJSCs). hMSC secretomes were obtained under xenofree conditions and analyzed by liquid chromatography tandem mass spectrometry (LC/MS-MS). Biological processes related to angiogenesis were found to be enriched in the proteomic profile of hMSC secretomes. hWJSC secretomes revealed a more complete angiogenic network with higher concentrations of angiogenesis related proteins, followed by hBMSC secretomes. hADSC secretomes lacked central angiogenic proteins and expressed most detected proteins to a significantly lower level. In vivo all secretomes induced vascularization of subcutaneously implanted Matrigel plugs in mice. Differences in secretome composition were functionally analyzed with monocyte and endothelial cell (EC) in vitro co-culture experiments using vi-SNE based multidimensional flow cytometry data analysis. Functional responses between hBMSC and hWJSC secretomes were comparable, with significantly higher migration of CD14++ CD16− monocytes and enhanced macrophage differentiation compared with hADSC secretomes. Both secretomes also induced a more profound pro-angiogenic phenotype of ECs. These results suggest hWJSCs secretome as the most potent hMSC source for inflammation-mediated angiogenesis induction, while the potency of hADSC secretomes was lowest. This systematic analysis may have implication on the selection of hMSCs for future clinical studies.

118 citations


Journal ArticleDOI
TL;DR: This review examines fibrous proteins of the extracellular matrix and their effects on cell behavior, followed by a discussion of the cellular responses elicited by fiber diameter, alignment, and scaffold porosity of two dimensional and three dimensional synthetic scaffolds.
Abstract: Tissue engineering often uses synthetic scaffolds to direct cell responses during engineered tissue development. Since cells reside within specific niches of the extracellular matrix, it is important to understand how the matrix guides cell response and then incorporate this knowledge into scaffold design. The goal of this review is to review elements of cell–matrix interactions that are critical to informing and evaluating cellular response on synthetic scaffolds. Therefore, this review examines fibrous proteins of the extracellular matrix and their effects on cell behavior, followed by a discussion of the cellular responses elicited by fiber diameter, alignment, and scaffold porosity of two dimensional (2D) and three dimensional (3D) synthetic scaffolds. Variations in fiber diameter, alignment, and scaffold porosity guide stem cells toward different lineages. Cells generally exhibit rounded morphology on nanofibers, randomly oriented fibers, and low-porosity scaffolds. Conversely, cells exhibit elongated, spindle-shaped morphology on microfibers, aligned fibers, and high-porosity scaffolds. Cells migrate with higher velocities on nanofibers, aligned fibers, and high-porosity scaffolds but migrate greater distances on microfibers, aligned fibers, and highly porous scaffolds. Incorporating relevant biomimetic factors into synthetic scaffolds destined for specific tissue application could take advantage of and further enhance these responses.

108 citations


Journal ArticleDOI
TL;DR: The identified criteria exclude a majority of the affected population from treatment, and thus greater focus must be placed on these emerging cartilage regeneration techniques to treat patients with the challenging “red knee”.
Abstract: The field of articular cartilage repair has made significant advances in recent decades; yet current therapies are generally not evaluated or tested, at the time of pivotal trial, in patients with a variety of common comorbidities. To that end, we systematically reviewed cartilage repair clinical trials to identify common exclusion criteria and reviewed the literature to identify emerging regenerative approaches that are poised to overcome these current exclusion criteria. The term “knee cartilage repair” was searched on clinicaltrials.gov. Of the 60 trials identified on initial search, 33 were further examined to extract exclusion criteria. Criteria excluded by more than half of the trials were identified in order to focus discussion on emerging regenerative strategies that might address these concerns. These criteria included age ( 55 years old), small defects ( 8 cm2), multiple defect (>2 lesions), BMI >35, meniscectomy (>50%), bilateral knee pathology, ligamentous instability, arthritis, malalignment, prior repair, kissing lesions, neurologic disease of lower extremities, inflammation, infection, endocrine or metabolic disease, drug or alcohol abuse, pregnancy, and history of cancer. Finally, we describe emerging tissue engineering and regenerative approaches that might foster cartilage repair in these challenging environments. The identified criteria exclude a majority of the affected population from treatment, and thus greater focus must be placed on these emerging cartilage regeneration techniques to treat patients with the challenging “red knee”.

87 citations


Journal ArticleDOI
TL;DR: Combining conventional surgical treatment for OAK, is followed by autologous chondrocyte sheet transplantation for cartilage repair and the combination therapy was effective, as assessed by MRI, arthroscopy, viscoelasticity, histology, and the clinical outcomes of KOOS and LKS.
Abstract: Current cartilage regenerative therapies are not fully effective in treating osteoarthritis of the knee (OAK). We have developed chondrocyte sheets for autologous transplantation and tested these in in vitro and in vivo preclinical studies, and have reported that the transplantation of chondrocyte sheets promoted hyaline cartilage repair in rat, rabbit, and minipig models. However, autologous transplantation of chondrocyte sheets has yet to be reported in humans. Here, we report our combination therapy in which conventional surgical treatment for OAK, is followed by autologous chondrocyte sheet transplantation for cartilage repair. Eight patients with OAK and cartilage defects categorized arthroscopically as Outerbridge grade III or IV receive the therapy. Patients are thoroughly assessed by preoperative and postoperative X-rays, magnetic resonance imaging (MRI), arthroscopy, Knee injury and Osteoarthritis Outcome Score (KOOS), Lysholm Knee Score (LKS), and a laser-induced photoacoustic method to assess cartilage viscoelasticity. Arthroscopic biopsies of all patients are performed 12 months after transplantation for histological evaluation. The properties of the chondrocyte sheets are evaluated using gene expression analysis to investigate the ability to predict the clinical and structural outcomes of the therapy. For this small initial longitudinal series, combination therapy is effective, as assessed by MRI, arthroscopy, viscoelasticity, histology, and the clinical outcomes of KOOS and LKS. Gene marker sets identified in autologous chondrocyte sheets may be predictive of the overall KOOS, LKS, and histological scores after therapy. These predictive gene sets may be potential alternative markers for evaluating OAK treatment.

77 citations


Journal ArticleDOI
TL;DR: Investigation of the differential but overlapping roles of two perivascular cell subsets in paracrine induction of bone repair finds that adipose-derived CD146+ pericytes and CD34+ adventitial cells may demonstrate synergistic bone healing when applied as a combination cellular therapy.
Abstract: Pericytes and other perivascular stem/stromal cells are of growing interest in the field of tissue engineering. A portion of perivascular cells are well recognized to have MSC (mesenchymal stem cell) characteristics, including multipotentiality, self-renewal, immunoregulatory functions, and diverse roles in tissue repair. Here, we investigate the differential but overlapping roles of two perivascular cell subsets in paracrine induction of bone repair. CD146+CD34−CD31−CD45−pericytes and CD34+CD146−CD31−CD45−adventitial cells were derived from human adipose tissue and applied alone or in combination to calvarial bone defects in mice. In vitro, osteogenic differentiation and tubulogenesis assays were performed using either fluorescence activated cell sorting-derived CD146+ pericytes or CD34+ adventitial cells. Results showed that CD146+ pericytes induced increased cord formation in vitro and angiogenesis in vivo in comparison with patient-matched CD34+ adventitial cells. In contrast, CD34+ adventitial cells demonstrated heightened paracrine-induced osteogenesis in vitro. When applied in a critical-size calvarial defect model in NOD/SCID mice, the combination treatment of CD146+ pericytes with CD34+ adventitial cells led to greater re-ossification than either cell type alone. In summary, adipose-derived CD146+ pericytes and CD34+ adventitial cells display functionally distinct yet overlapping and complementary roles in bone defect repair. Consequently, CD146+ pericytes and CD34+ adventitial cells may demonstrate synergistic bone healing when applied as a combination cellular therapy. Different kinds of cells found surrounding blood vessels in fat play a complementary and synergistic role in bone healing. Aaron James from Johns Hopkins University in Baltimore, MD, USA, and colleagues derived two subsets of cells from human fat tissue: contractile cells known as pericytes that wrap around cellular lining of capillaries and tiny veins; and connective tissue cells known as adventitial cells that surrounds larger vessels. Under isolated culture conditions, pericytes stimulated the development of primitive blood vessels, whereas adventitial cells promoted early bone formation. The researchers applied the cells to the sites of bone defects in mice and saw that combined treatment with both pericytes and adventitial cells led to greater bone repair than treatment with either cell type alone.

57 citations


Journal ArticleDOI
TL;DR: Pulse oximetry revealed significant increase in blood-oxygen saturation in primary AT2 recipients, indicating that transplanted cells also confer increased pulmonary function after influenza, and both acid installation and bleomycin injury models are also amenable to AT2 transplantation.
Abstract: Alveolar type-2 (AT2) cells are necessary for the lung’s regenerative response to epithelial insults such as influenza. However, current methods to expand these cells rely on mesenchymal co-culture, complicating the possibility of transplantation following acute injury. Here we developed several mesenchyme-free culture conditions that promote growth of murine AT2 organoids. Transplanting dissociated AT2 organoids into influenza-infected mice demonstrated that organoids engraft and either proliferate as AT2 cells or unexpectedly adopt a basal cell-like fate associated with maladaptive regeneration. Alternatively, transplanted primary AT2 cells also robustly engraft, maintaining their AT2 lineage while replenishing the alveolar type-1 (AT1) cell population in the epithelium. Importantly, pulse oximetry revealed significant increase in blood-oxygen saturation in primary AT2 recipients, indicating that transplanted cells also confer increased pulmonary function after influenza. We further demonstrated that both acid installation and bleomycin injury models are also amenable to AT2 transplantation. These studies provide additional methods to study AT2 progenitor potential, while serving as proof-of-principle for adoptive transfer of alveolar progenitors in potential therapeutic applications.

44 citations


Journal ArticleDOI
TL;DR: This study demonstrates the principal feasibility of clinically relevant hTEM to manufacture hTESVs for TPVR, and describes the in vitro development of human cell-derived TEM and their application as tissue-engineered sinus valves, endowed with Valsalva sinuses for TP VR.
Abstract: Transcatheter valve replacement indication is currently being extended to younger and lower-risk patients. However, transcatheter prostheses are still based on glutaraldehyde-fixed xenogeneic materials. Hence, they are prone to calcification and long-term structural degeneration, which are particularly accelerated in younger patients. Tissue-engineered heart valves based on decellularized in vitro grown tissue-engineered matrices (TEM) have been suggested as a valid alternative to currently used bioprostheses, showing good performance and remodeling capacity as transcatheter pulmonary valve replacement (TPVR) in sheep. Here, we first describe the in vitro development of human cell-derived TEM (hTEM) and their application as tissue-engineered sinus valves (hTESVs), endowed with Valsalva sinuses for TPVR. The hTEM and hTESVs were systematically characterized in vitro by histology, immunofluorescence, and biochemical analyses, before they were evaluated in a pulse duplicator system under physiological pulmonary pressure conditions. Thereafter, transapical delivery of hTESVs was tested for feasibility and safety in a translational sheep model, achieving good valve performance and early cellular infiltration. This study demonstrates the principal feasibility of clinically relevant hTEM to manufacture hTESVs for TPVR.

38 citations


Journal ArticleDOI
TL;DR: Preliminary evidence indicates that MSCs are both safe and tolerable in patients, however future randomized controlled trials are required to translate the promising preclinical research into an effective therapy for hopeful patients.
Abstract: Significant progress has been made during the past few decades in stem cell therapy research for various diseases and injury states; however this has not been overwhelmingly translated into approved therapies, despite much public attention and the rise in unregulated ‘regenerative clinics’. In the last decade, preclinical research focusing on mesenchymal stem/stromal cell (MSC) therapy in experimental animal models of hemorrhagic stroke has gained momentum and has led to the development of a small number of human trials. Here we review the current studies focusing on MSC therapy for hemorrhagic stroke in an effort to summarize the status of preclinical and clinical research. Preliminary evidence indicates that MSCs are both safe and tolerable in patients, however future randomized controlled trials are required to translate the promising preclinical research into an effective therapy for hopeful patients.

38 citations


Journal ArticleDOI
TL;DR: The anatomical distribution, regulation, and function of the cardiac lymphatic network in a highly regenerative zebrafish model system is described and a context-dependent requirement for the lymphatic vasculature during cardiac growth and regeneration is revealed.
Abstract: The lymphatic vasculature mediates essential physiological functions including fluid homeostasis, lipid and hormone transport, and immune cell trafficking. Recent studies have suggested that promoting lymphangiogenesis enhances cardiac repair following injury, but it is unknown whether lymphangiogenesis is required for cardiac regeneration. Here, we describe the anatomical distribution, regulation, and function of the cardiac lymphatic network in a highly regenerative zebrafish model system using transgenic reporter lines and loss-of-function approaches. We show that zebrafish lacking functional vegfc and vegfd signaling are devoid of a cardiac lymphatic network and display cardiac hypertrophy in the absence of injury, suggesting a role for these vessels in cardiac tissue homeostasis. Using two different cardiac injury models, we report a robust lymphangiogenic response following cryoinjury, but not following apical resection injury. Although the majority of mutants lacking functional vegfc and vegfd signaling were able to mount a full regenerative response even in the complete absence of a cardiac lymphatic vasculature, cardiac regeneration was severely impaired in a subset of mutants, which was associated with heightened pro-inflammatory cytokine signaling. These findings reveal a context-dependent requirement for the lymphatic vasculature during cardiac growth and regeneration.

31 citations


Journal ArticleDOI
TL;DR: A patient-centric regenerative medicine curriculum embedded into medical school core learning, targeting on the deployment of a regenerative model of care, and complementary subject matter included ethics, regulatory affairs, quality control, supply chain, and biobusiness is presented.
Abstract: Regenerative sciences are poised to transform clinical practice. The quest for regenerative solutions has, however, exposed a major gap in current healthcare education. A call for evidence-based adoption has underscored the necessity to establish rigorous regenerative medicine educational programs early in training. Here, we present a patient-centric regenerative medicine curriculum embedded into medical school core learning. Launched as a dedicated portal of new knowledge, learner proficiency was instilled by means of a discovery–translation–application blueprint. Using the “from the patient to the patient” paradigm, student experience recognized unmet patient needs, evolving regenerative technologies, and ensuing patient management solutions. Targeted on the deployment of a regenerative model of care, complementary subject matter included ethics, regulatory affairs, quality control, supply chain, and biobusiness. Completion of learning objectives was monitored by online tests, group teaching, simulated clinical examinations along with longitudinal continuity across medical school training and residency. Success was documented by increased awareness and proficiency in domain-relevant content, as well as specialty identification through practice exposure, research engagement, clinical acumen, and education-driven practice advancement. Early incorporation into mainstream medical education offers a tool to train next-generation healthcare providers equipped to adopt and deliver validated regenerative medicine solutions.

Journal ArticleDOI
TL;DR: The results suggest the combination of stem cell and gene therapy as a viable therapeutic option for HD treatment and establish monkey NPC cell lines from induced pluripotent stem cells (iPSCs) that can differentiate into GABAergic neurons in vitro as well as in mouse brains without tumor formation.
Abstract: Huntington’s disease (HD) is a dominantly inherited monogenetic disorder characterized by motor and cognitive dysfunction due to neurodegeneration. The disease is caused by the polyglutamine (polyQ) expansion at the 5′ terminal of the exon 1 of the huntingtin (HTT) gene, IT15, which results in the accumulation of mutant HTT (mHTT) aggregates in neurons and cell death. The monogenetic cause and the loss of specific neural cell population make HD a suitable candidate for stem cell and gene therapy. In this study, we demonstrate the efficacy of the combination of stem cell and gene therapy in a transgenic HD mouse model (N171-82Q; HD mice) using rhesus monkey (Macaca mulatta) neural progenitor cells (NPCs). We have established monkey NPC cell lines from induced pluripotent stem cells (iPSCs) that can differentiate into GABAergic neurons in vitro as well as in mouse brains without tumor formation. Wild-type monkey NPCs (WT-NPCs), NPCs derived from a transgenic HD monkey (HD-NPCs), and genetically modified HD-NPCs with reduced mHTT levels by stable expression of small-hairpin RNA (HD-shHD-NPCs), were grafted into the striatum of WT and HD mice. Mice that received HD-shHD-NPC grafts showed a significant increase in lifespan compared to the sham injection group and HD mice. Both WT-NPC and HD-shHD-NPC grafts in HD mice showed significant improvement in motor functions assessed by rotarod and grip strength. Also, immunohistochemistry demonstrated the integration and differentiation. Our results suggest the combination of stem cell and gene therapy as a viable therapeutic option for HD treatment.

Journal ArticleDOI
TL;DR: This work proposes a unique methodology for the targeted delivery of DFO to fracture sites in order to facilitate neovascularization, and investigates implanted HA-DFO’s capacity to facilitate fracture healing in the irradiated rat mandible, a model whereby nonunions routinely develop secondary to obliteration of vascularity.
Abstract: Approximately 6.3 million fractures occur in the U.S. annually, with 5–10% resulting in debilitating nonunions. A major limitation to achieving successful bony union is impaired neovascularization. To augment fracture healing, we designed an implantable drug delivery technology containing the angiogenic stimulant, deferoxamine (DFO). DFO activates new blood vessel formation through iron chelation and upregulation of the HIF-1α pathway. However, due to its short half-life and rapid clearance, maintaining DFO at the callus site during peak fracture angiogenesis has remained challenging. To overcome these limitations, we composed an implantable formulation of DFO conjugated to hyaluronic acid (HA). This compound immobilizes DFO within the fracture callus throughout the angiogenic window, making it a high-capacity iron sponge that amplifies blood vessel formation and prevents nonunions. We investigated implanted HA-DFO’s capacity to facilitate fracture healing in the irradiated rat mandible, a model whereby nonunions routinely develop secondary to obliteration of vascularity. HA-DFO implantation significantly improved radiomorphometrics and metrics of biomechanical strength. In addition, HA-DFO treated mandibles exhibited a remarkable 91% bone union rate, representing a 3.5-fold improvement over non-treated/irradiated controls (20% bone union rate). Collectively, our work proposes a unique methodology for the targeted delivery of DFO to fracture sites in order to facilitate neovascularization. If these findings are successfully translated into clinical practice, millions of patients will benefit from the prevention of nonunions.

Journal ArticleDOI
TL;DR: The emergence of significant quantitative trait loci for several post-MI traits indicates that utilizing CC strains is a valid approach for gene network discovery in cardiovascular disease, enabling more accurate clinical risk assessment and prediction.
Abstract: Clinical variation in patient responses to myocardial infarction (MI) has been difficult to model in laboratory animals. To assess the genetic basis of variation in outcomes after heart attack, we characterized responses to acute MI in the Collaborative Cross (CC), a multi-parental panel of genetically diverse mouse strains. Striking differences in post-MI functional, morphological, and myocardial scar features were detected across 32 CC founder and recombinant inbred strains. Transcriptomic analyses revealed a plausible link between increased intrinsic cardiac oxidative phosphorylation levels and MI-induced heart failure. The emergence of significant quantitative trait loci for several post-MI traits indicates that utilizing CC strains is a valid approach for gene network discovery in cardiovascular disease, enabling more accurate clinical risk assessment and prediction.

Journal ArticleDOI
TL;DR: The degree of overexpression of caveolin-1 associated with different therapeutic options for HTS correlates with clinical improvements in HTS, which makes endo- or exogenous induction of Cav-1 not only an important therapeutic target for H TS, but also highlights its use as a preventive target to reduce or avoid HTS formation.
Abstract: Reduced expression of caveolin-1 (Cav-1) is an important pathogenic factor in hypertrophic scarring (HTS). Such a reduction can be found in connection with the main known risk factors for HTS, including dark skin, female gender, young age, burn site and severity of the injury. The degree of overexpression of Cav-1 associated with different therapeutic options for HTS correlates with clinical improvements in HTS. This makes endo- or exogenous induction of Cav-1 not only an important therapeutic target for HTS, but also highlights its use as a preventive target to reduce or avoid HTS formation.

Journal ArticleDOI
TL;DR: This project marks the first milestone in overcoming ethical hurdles and oncogenic safety concerns associated with the use of an embryonic stem cell-derived line, and aims to draw attention to the key technical challenges pertinent to the generation of a biologically competent hESC-RPE cell line.
Abstract: The use of human embryonic stem cell (hESC)-derived Retinal Pigment Epithelium (RPE) transplants has advanced dramatically in different forms for clinical application in macular degeneration. This review focuses on the first generation of hESC-RPE cell line, named as “MA09-hRPE” by Astellas Institute of Regenerative Medicine (AIRM), and its therapeutic application in human, which evaluated the safety and efficacy of MA09-hRPE cell line transplanted in patients with macular degeneration. This project marks the first milestone in overcoming ethical hurdles and oncogenic safety concerns associated with the use of an embryonic stem cell-derived line. Through in-depth, evidence-based analysis of the MA09-hRPE cell line, along with other hESC-RPE cell lines, this review aims to draw attention to the key technical challenges pertinent to the generation of a biologically competent hESC-RPE cell line and distill the four key prognostic factors residing in the host retina, which concurrently determine the outcomes of clinical efficacy and visual benefits. Given that the technology is still at its infancy for human use, a new clinical regulatory path could aid in cell line validation through small cohort, adaptive clinical trials to accelerate product development toward commercialization. These strategic insights will be invaluable to help both academia and industry, collaboratively shorten the steep learning curve, and reduce large development expenditures spent on unnecessary lengthy clinical trials.

Journal ArticleDOI
TL;DR: It is demonstrated that exogenous CNTF exerts beneficial regenerative effects by rendering the heart more resilient to injury and efficient in activation of the proliferative programs.
Abstract: Unlike mammals, adult zebrafish can regenerate their hearts after injury via proliferation of cardiomyocytes. The cell-cycle entry of zebrafish cardiac cells can also be stimulated through preconditioning by thoracotomy, a chest incision without myocardial damage. To identify effector genes of heart preconditioning, we performed transcriptome analysis of ventricles from thoracotomized zebrafish. This intervention led to enrichment of cardioprotective factors, epithelial-to-mesenchymal transition genes, matrix proteins and components of LIFR/gp130 signaling. We identified that inhibition of the downstream signal transducer of the LIFR/gp130 pathway through treatment with Ruxolitinib, a specific JAK1/2 antagonist, suppressed the cellular effects of preconditioning. Activation of LIFR/gp130 signaling by a single injection of the ligand Cilliary Neurotrophic Factor, CNTF, was sufficient to trigger cardiomyocyte proliferation in the intact heart. In addition, CNTF induced other pro-regenerative processes, including expression of cardioprotective genes, activation of the epicardium, enhanced intramyocardial Collagen XII deposition and leucocyte recruitment. These effects were abrogated by the concomitant inhibition of the JAK/STAT activity. Mutation of the cntf gene suppressed the proliferative response of cardiomyocytes after thoracotomy. In the regenerating zebrafish heart, CNTF injection prior to ventricular cryoinjury improved the initiation of regeneration via reduced cell apoptosis and boosted cardiomyocyte proliferation. Our findings reveal the molecular effectors of preconditioning and demonstrate that exogenous CNTF exerts beneficial regenerative effects by rendering the heart more resilient to injury and efficient in activation of the proliferative programs.

Journal ArticleDOI
TL;DR: It is shown, via live tracking of individual muscle fibres, that dystrophic myofibres in the zebrafish model of MDC1A maintain sarcolemmal integrity and undergo dynamic remodelling behaviours post detachment, including focal sarcoelmmal reattachment, cell extension and hyper-fusion with surrounding myoblasts, implying the existence of a window of therapeutic opportunity.
Abstract: Laminins comprise structural components of basement membranes, critical in the regulation of differentiation, survival and migration of a diverse range of cell types, including skeletal muscle. Mutations in one muscle enriched Laminin isoform, Laminin alpha2 (Lama2), results in the most common form of congenital muscular dystrophy, congenital muscular dystrophy type 1A (MDC1A). However, the exact cellular mechanism by which Laminin loss results in the pathological spectrum associated with MDC1A remains elusive. Here we show, via live tracking of individual muscle fibres, that dystrophic myofibres in the zebrafish model of MDC1A maintain sarcolemmal integrity and undergo dynamic remodelling behaviours post detachment, including focal sarcolemmal reattachment, cell extension and hyper-fusion with surrounding myoblasts. These observations imply the existence of a window of therapeutic opportunity, where detached cells may be "re-functionalised" prior to their delayed entry into the cell death program, a process we show can be achieved by muscle specific or systemic Laminin delivery. We further reveal that Laminin also acts as a pro-regenerative factor that stimulates muscle stem cell-mediated repair in lama2-deficient animals in vivo. The potential multi-mode of action of Laminin replacement therapy suggests it may provide a potent therapeutic axis for the treatment for MDC1A.

Journal ArticleDOI
TL;DR: Results indicate that single cell sheets form polarized structures that maintain cell–cell junctions and secretory granules in vitro while layering of two-single cell sheets forms a glandular-like pattern in vitro, and indicates the double layer form to provide the best option in terms of cell differentiation and recovered tissue integrity.
Abstract: Temperature-responsive polymer grafted tissue culture dishes release cells as confluent living sheets in response to small changes in temperature, with recovered cell sheets retaining cell–cell communications, functional extracellular matrices and tissue-like behaviors. These features promote tissue regeneration and improve transplantation efficacy in various tissues including cartilage, heart, kidney, liver, endometrium, cornea, middle ear, periodontium, and esophageal living sheet transplants. However, the functional effects of cell sheets for salivary gland regeneration to treat hyposalivation have not yet been studied. Thus, the present study aims to both establish the viability of thermoresponsive cell sheets for use in salivary glands and then explore the delivery option (i.e., single vs. multiple layers) that would result in the most complete tissue growth in terms of cell differentiation and recovered tissue integrity. Results indicate that single cell sheets form polarized structures that maintain cell–cell junctions and secretory granules in vitro while layering of two-single cell sheets forms a glandular-like pattern in vitro. Moreover, double layer cell sheets enhance tissue formation, cell differentiation and saliva secretion in vivo. In contrast, single cell sheets demonstrated only modest gains relative to the robust growth seen with the double layer variety. Together, these data verify the utility of thermoresponsive cell sheets for use in salivary glands and indicates the double layer form to provide the best option in terms of cell differentiation and recovered tissue integrity, thereby offering a potential new therapeutic strategy for treating hyposalivation.

Journal ArticleDOI
TL;DR: Results indicate functional AF regeneration after severe herniation injury occurs in neonates and not adults, and identify an exciting cellular mechanism of neonatal AF regeneration that is predominantly driven by Scx-lineage annulocytes.
Abstract: Intervertebral disc (IVD) injuries are a cause of degenerative changes in adults which can lead to back pain, a leading cause of disability. We developed a model of neonatal IVD regeneration with full functional restoration and investigate the cellular dynamics underlying this unique healing response. We employed genetic lineage tracing in mice using Scleraxis (Scx) and Sonic hedgehog (Shh) to fate-map annulus fibrosus (AF) and nucleus pulposus (NP) cells, respectively. Results indicate functional AF regeneration after severe herniation injury occurs in neonates and not adults. AF regeneration is mediated by Scx-lineage cells that lose ScxGFP expression and adopt a stem/progenitor phenotype (Sca-1, days 3-14), proliferate, and then redifferentiate towards type I collagen producing, ScxGFP+ annulocytes at day 56. Non Scx-lineage cells were also transiently observed during neonatal repair, including Shh-lineage cells, macrophages, and myofibroblasts; however, these populations were no longer detected by day 56 when annulocytes redifferentiate. Overall, repair did not occur in adults. These results identify an exciting cellular mechanism of neonatal AF regeneration that is predominantly driven by Scx-lineage annulocytes.

Journal ArticleDOI
TL;DR: Cell therapy against stroke appears to constitute a premature area compared with cartilage repair as assessed in the previous report, and tracking by means of the ID number of each trial via PubMed revealed that 44% of clinical studies in this field have corresponding published results, which was discussed.
Abstract: Definitive treatment of stroke constitutes an important thesis of regenerative medicine in the cerebrovascular field. However, to date, no cell therapy products for stroke are yet on the market. In this study, we examined the clinical research trends related to cell therapy products in the stroke field based on data obtained from the ClinicalTrials.gov website and International Clinical Trials Research Platform (ICTRP) portal site. These data do not offer results of clinical trials comprehensively but provide information regarding various attributes of planned clinical trials including work in progress. We selected 78 cell therapy studies related to the field of stroke treatment from ClinicalTrial.gov and ICTRP. These were analyzed according to, e.g., the reporting countries, origin (autologous or allogeneic), of cell used, cell types and source organs, the progress of translational phases, target phase of the disease (acute or chronic stroke), and route of administration. This analysis revealed a trend whereby in the acute phase, mesenchymal stem cells were administered intravenously at a relatively higher dose, whereas in the chronic phase a small number of cells were administered intracranially. Only two randomized controlled Phase III studies with over 100 patients are registered, but none of them has been completed. Thus, cell therapy against stroke appears to constitute a premature area compared with cartilage repair as assessed in our previous report. In addition, tracking by means of the ID number of each trial via PubMed revealed that 44% of clinical studies in this field have corresponding published results, which was also discussed.

Journal ArticleDOI
TL;DR: Alginate encapsulation of pro-angio/arteriogenic macrophages enhances cell retention and subsequent limb reperfusion in vivo, and may represent a means of improving the efficacy of cell-based therapies currently under investigation for the treatment of limb ischaemia.
Abstract: Cell therapies to treat critical limb ischaemia have demonstrated only modest results in clinical trials, and this has been partly attributed to poor cell retention following their delivery directly into the ischaemic limb. The aim of this study was to determine whether alginate encapsulation of therapeutic pro-angio/arteriogenic macrophages enhances their retention and ultimately improves limb perfusion. A reproducible GMP-compliant method for generating 300 µm alginate capsules was developed to encapsulate pro-angio/arteriogenic macrophages. Longitudinal analysis revealed no detrimental effect of encapsulation on cell number or viability in vitro, and macrophages retained their pro-angio/arteriogenic phenotype. Intramuscular delivery of encapsulated macrophages into the murine ischaemic hindlimb demonstrated increased cell retention compared with injection of naked cells (P = 0.0001), and that this was associated both enhanced angiogenesis (P = 0.02) and arteriogenesis (P = 0.03), and an overall improvement in limb perfusion (P = 0.0001). Alginate encapsulation of pro-angio/arteriogenic macrophages enhances cell retention and subsequent limb reperfusion in vivo. Encapsulation may therefore represent a means of improving the efficacy of cell-based therapies currently under investigation for the treatment of limb ischaemia. Blood vessel-promoting immune cells stay longer in the body and help promote blood flow to the feet and toes of mice with critical limb ischemia when the therapeutic cells are packaged inside tiny bubbles of a biocompatible seaweed derivative called alginate. A team led by Bijan Modarai from King’s College London, UK, developed a reliable method for placing artery-stimulating macrophage cells inside alginate capsules measuring 300 micrometres in diameter, about the thickness of a postcard. In culture, the alginate coating had no effect on the macrophage viability; and when injected into the muscles of mice with artery blockages to their hindlimbs, the encapsulated cells were retained longer and offered greater therapeutic benefit than uncoated cells. This encapsulation strategy may improve the efficacy of comparable cell-based therapies for humans with limb ischemia.

Journal ArticleDOI
TL;DR: TMT promoted neurite extensions from the grafted neural cells, and the combined therapy of cell transplantation and locomotor training might have the potential to promote the functional recovery of rats with brain injury compared tocell transplantation alone.
Abstract: Cell-based therapies are attracting attention as alternative therapeutic options for brain damage. In this study, we investigated the therapeutic effect of a combined therapy of cell transplantation and locomotor training by evaluating the neuronal connectivity. We transplanted neural cells derived from the frontal cortex of E14.5 GFP-expressing mice into the frontal lobe of 3-week-old rats with brain injury, followed by treadmill training (TMT) for 14 days. In the TMT(−) group, graft-derived neurites were observed only in the striatum and internal capsule. In contrast, in the TMT(+) group, they were observed in the striatum, internal capsule, and the cerebral peduncle and spinal cord. The length of the longest neurite was significantly longer in the TMT(+) group than in the TMT(−) group. In the TMT(+) group, Synaptophysin+ vesicles on the neuronal fibers around the ipsilateral red nucleus were found, suggesting that neuronal fibers from the grafted cells formed synapses with the host neurons. A functional analysis of motor recovery using the foot fault test showed that, 1 week after the transplantation, the recovery was significantly better in the cell transplantation and TMT group than the cell transplantation only group. The percentage of cells expressing C-FOS was increased in the grafts in the TMT(+) group. In conclusion, TMT promoted neurite extensions from the grafted neural cells, and the combined therapy of cell transplantation and locomotor training might have the potential to promote the functional recovery of rats with brain injury compared to cell transplantation alone.