scispace - formally typeset
Search or ask a question

Showing papers in "Pharmacological Reviews in 2000"


Journal Article
TL;DR: Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional, and suggestions are made where such possibilities may be worth pursuing.
Abstract: Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.

4,663 citations


Journal Article
M. de Gasparo1, Kevin J. Catt, Tadashi Inagami, J. W. Wright, Th. Unger 
TL;DR: Although AT(1) receptors mediate most of the known actions of Ang II, the AT(2) receptor contributes to the regulation of blood pressure and renal function and the development of specific nonpeptide receptor antagonists has led to major advances in the physiology, pharmacology, and therapy of the renin-angiotensin system.
Abstract: The cardiovascular and other actions of angiotensin II (Ang II) are mediated by AT(1) and AT(2) receptors, which are seven transmembrane glycoproteins with 30% sequence similarity. Most species express a single autosomal AT(1) gene, but two related AT(1A) and AT(1B) receptor genes are expressed in rodents. AT(1) receptors are predominantly coupled to G(q/11), and signal through phospholipases A, C, D, inositol phosphates, calcium channels, and a variety of serine/threonine and tyrosine kinases. Many AT(1)-induced growth responses are mediated by transactivation of growth factor receptors. The receptor binding sites for agonist and nonpeptide antagonist ligands have been defined. The latter compounds are as effective as angiotensin converting enzyme inhibitors in cardiovascular diseases but are better tolerated. The AT(2) receptor is expressed at high density during fetal development. It is much less abundant in adult tissues and is up-regulated in pathological conditions. Its signaling pathways include serine and tyrosine phosphatases, phospholipase A(2), nitric oxide, and cyclic guanosine monophosphate. The AT(2) receptor counteracts several of the growth responses initiated by the AT(1) and growth factor receptors. The AT(4) receptor specifically binds Ang IV (Ang 3-8), and is located in brain and kidney. Its signaling mechanisms are unknown, but it influences local blood flow and is associated with cognitive processes and sensory and motor functions. Although AT(1) receptors mediate most of the known actions of Ang II, the AT(2) receptor contributes to the regulation of blood pressure and renal function. The development of specific nonpeptide receptor antagonists has led to major advances in the physiology, pharmacology, and therapy of the renin-angiotensin system.

2,063 citations


Journal Article
TL;DR: The activation of SNS during an immune response might be aimed to localize the inflammatory response, through induction of neutrophil accumulation and stimulation of more specific humoral immune responses, although systemically it may suppress Th1 responses, and, thus protect the organism from the detrimental effects of proinflammatory cytokines and other products of activated macrophages.
Abstract: The brain and the immune system are the two major adaptive systems of the body During an immune response the brain and the immune system "talk to each other" and this process is essential for maintaining homeostasis Two major pathway systems are involved in this cross-talk: the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS) This overview focuses on the role of SNS in neuroimmune interactions, an area that has received much less attention than the role of HPA axis Evidence accumulated over the last 20 years suggests that norepinephrine (NE) fulfills the criteria for neurotransmitter/neuromodulator in lymphoid organs Thus, primary and secondary lymphoid organs receive extensive sympathetic/noradrenergic innervation Under stimulation, NE is released from the sympathetic nerve terminals in these organs, and the target immune cells express adrenoreceptors Through stimulation of these receptors, locally released NE, or circulating catecholamines such as epinephrine, affect lymphocyte traffic, circulation, and proliferation, and modulate cytokine production and the functional activity of different lymphoid cells Although there exists substantial sympathetic innervation in the bone marrow, and particularly in the thymus and mucosal tissues, our knowledge about the effect of the sympathetic neural input on hematopoiesis, thymocyte development, and mucosal immunity is extremely modest In addition, recent evidence is discussed that NE and epinephrine, through stimulation of the beta(2)-adrenoreceptor-cAMP-protein kinase A pathway, inhibit the production of type 1/proinflammatory cytokines, such as interleukin (IL-12), tumor necrosis factor-alpha, and interferon-gamma by antigen-presenting cells and T helper (Th) 1 cells, whereas they stimulate the production of type 2/anti-inflammatory cytokines such as IL-10 and transforming growth factor-beta Through this mechanism, systemically, endogenous catecholamines may cause a selective suppression of Th1 responses and cellular immunity, and a Th2 shift toward dominance of humoral immunity On the other hand, in certain local responses, and under certain conditions, catecholamines may actually boost regional immune responses, through induction of IL-1, tumor necrosis factor-alpha, and primarily IL-8 production Thus, the activation of SNS during an immune response might be aimed to localize the inflammatory response, through induction of neutrophil accumulation and stimulation of more specific humoral immune responses, although systemically it may suppress Th1 responses, and, thus protect the organism from the detrimental effects of proinflammatory cytokines and other products of activated macrophages The above-mentioned immunomodulatory effects of catecholamines and the role of SNS are also discussed in the context of their clinical implication in certain infections, major injury and sepsis, autoimmunity, chronic pain and fatigue syndromes, and tumor growth Finally, the pharmacological manipulation of the sympathetic-immune interface is reviewed with focus on new therapeutic strategies using selective alpha(2)- and beta(2)-adrenoreceptor agonists and antagonists and inhibitors of phosphodiesterase type IV in the treatment of experimental models of autoimmune diseases, fibromyalgia, and chronic fatigue syndrome

2,030 citations


Journal Article
TL;DR: A widely accepted receptor nomenclature system is described, ratified by the International Union of Pharmacology, that is facilitating clear communication in this area and updating current concepts of the biology and pharmacology of the chemokine system.
Abstract: Chemokine receptors comprise a large family of seven transmembrane domain G protein-coupled receptors differentially expressed in diverse cell types. Biological activities have been most clearly defined in leukocytes, where chemokines coordinate development, differentiation, anatomic distribution, trafficking, and effector functions and thereby regulate innate and adaptive immune responses. Pharmacological analysis of chemokine receptors is at an early stage of development. Disease indications have been established in human immunodeficiency virus/acquired immune deficiency syndrome and in Plasmodium vivax malaria, due to exploitation of CCR5 and Duffy, respectively, by the pathogen for cell entry. Additional indications are emerging among inflammatory and immunologically mediated diseases, but selection of targets in this area still remains somewhat speculative. Small molecule antagonists with nanomolar affinity have been reported for 7 of the 18 known chemokine receptors but have not yet been studied in clinical trials. Virally encoded chemokine receptors, as well as chemokine agonists and antagonists, and chemokine scavengers have been identified in medically important poxviruses and herpesviruses, again underscoring the importance of the chemokine system in microbial pathogenesis and possibly identifying specific strategies for modulating chemokine action therapeutically. The purpose of this review is to update current concepts of the biology and pharmacology of the chemokine system, to summarize key information about each chemokine receptor, and to describe a widely accepted receptor nomenclature system, ratified by the International Union of Pharmacology, that is facilitating clear communication in this area.

1,851 citations


Journal Article
TL;DR: Guanylyl cyclases are a family of enzymes that catalyze the conversion of GTP to cGMP as mentioned in this paper, and they are regulated by diverse extracellular agonists that include peptide hormones, bacterial toxins, and free radicals, as well as intracellular molecules such as calcium and adenine nucleotides.
Abstract: Guanylyl cyclases are a family of enzymes that catalyze the conversion of GTP to cGMP. The family comprises both membrane-bound and soluble isoforms that are expressed in nearly all cell types. They are regulated by diverse extracellular agonists that include peptide hormones, bacterial toxins, and free radicals, as well as intracellular molecules, such as calcium and adenine nucleotides. Stimulation of guanylyl cyclases and the resultant accumulation of cGMP regulates complex signaling cascades through immediate downstream effectors, including cGMP-dependent protein kinases, cGMP-regulated phosphodiesterases, and cyclic nucleotide-gated ion channels. Guanylyl cyclases and cGMP-mediated signaling cascades play a central role in the regulation of diverse (patho)physiological processes, including vascular smooth muscle motility, intestinal fluid and electrolyte homeostasis, and retinal phototransduction. Topics addressed in this review include the structure and chromosomal localization of the genes for guanylyl cyclases, structure and function of the members of the guanylyl cyclase family, molecular mechanisms regulating enzymatic activity, and molecular sequences coupling ligand binding to catalytic activity. A brief overview is presented of the downstream events controlled by guanylyl cyclases, including the effectors that are regulated by cGMP and the role that guanylyl cyclases play in cell physiology and pathophysiology.

1,211 citations


Journal Article
TL;DR: The current knowledge concerning the multiple actions of PACAP in the central nervous system and in various peripheral organs including the endocrine glands, the airways, and the cardiovascular and immune systems are reviewed, as well as the different effects ofPACAP on a number of tumor cell types.
Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid peptide that was first isolated from ovine hypothalamic extracts on the basis of its ability to stimulate cAMP formation in anterior pituitary cells. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-glucagon-growth hormone releasing factor-secretin superfamily. The sequence of PACAP has been remarkably well conserved during the evolution from protochordate to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, and respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide whose activity remains unknown. Two types of PACAP binding sites have been characterized. Type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes, the PACAP-specific PAC1 receptor, which is coupled to several transduction systems, and the two PACAP/VIP-indifferent VPAC1 and VPAC2 receptors, which are primarily coupled to adenylyl cyclase. PAC1 receptors are particularly abundant in the brain and pituitary and adrenal glands whereas VPAC receptors are expressed mainly in the lung, liver, and testis. The wide distribution of PACAP and PACAP receptors has led to an explosion of studies aimed at determining the pharmacological effects and biological functions of the peptide. This report reviews the current knowledge concerning the multiple actions of PACAP in the central nervous system and in various peripheral organs including the endocrine glands, the airways, and the cardiovascular and immune systems, as well as the different effects of PACAP on a number of tumor cell types.

1,108 citations


Journal Article
TL;DR: This review pays particular attention to the current knowledge and important results on the mechanisms of nongenomic steroid action and the modes of action are discussed in relation to their potential physiological or pathophysiological relevance and with regard to a cross-talk between genomic and nongnomic responses.
Abstract: According to the traditional model, steroid hormones bind to intracellular receptors and subsequently modulate transcription and protein synthesis, thus triggering genomic events finally responsible for delayed effects. Based upon similarities in molecular structure, specific receptors for steroids, vitamin D3 derivatives, thyroid hormone, retinoids, and a variety of orphan receptors are considered to represent a superfamily of steroid receptors. In addition, very rapid effects of steroids mainly affecting intracellular signaling have been widely recognized that are clearly incompatible with the genomic model. These rapid, nongenomic steroid actions are likely to be transmitted via specific membrane receptors. Evidence for nongenomic steroid effects and distinct receptors involved is presented for all steroid groups including related compounds like vitamin D3 and thyroid hormones. The physiological and clinical relevance of these rapid effects is still largely unclear, but their existence in vivo has been clearly shown in various settings including human studies. Drugs that specifically affect nongenomic steroid action may find applications in various clinical areas such as cardiovascular and central nervous disorders, electrolyte homeostasis, and infertility. In addition to a short description of genomic steroid action, this review pays particular attention to the current knowledge and important results on the mechanisms of nongenomic steroid action. The modes of action are discussed in relation to their potential physiological or pathophysiological relevance and with regard to a cross-talk between genomic and nongenomic responses.

1,014 citations


Journal Article
TL;DR: In vivo recent evidence suggest that the activation of mitogen-activated protein kinases and activator protein-1 by Ang II may play the key role in cardiovascular and renal diseases, however, there are still unresolved questions and controversies on the mechanism of Ang II-mediated cardiovascular and kidneys diseases.
Abstract: A growing body of evidence supports the notion that angiotensin II (Ang II), the central product of the renin-angiotensin system, may play a central role not only in the etiology of hypertension but also in the pathophysiology of cardiovascular and renal diseases in humans. In this review, we focus on the role of Ang II in cardiovascular and renal diseases at the molecular and cellular levels and discuss up-to-date evidence concerning the in vitro and in vivo actions of Ang II and the pharmacological effects of angiotensin receptor antagonists in comparison with angiotensin-converting enzyme inhibitors. Ang II, via AT(1) receptor, directly causes cellular phenotypic changes and cell growth, regulates the gene expression of various bioactive substances (vasoactive hormones, growth factors, extracellular matrix components, cytokines, etc.), and activates multiple intracellular signaling cascades (mitogen-activated protein kinase cascades, tyrosine kinases, various transcription factors, etc.) in cardiac myocytes and fibroblasts, vascular endothelial and smooth muscle cells, and renal mesangial cells. These actions are supposed to participate in the pathophysiology of cardiac hypertrophy and remodeling, heart failure, vascular thickening, atherosclerosis, and glomerulosclerosis. Furthermore, in vivo recent evidence suggest that the activation of mitogen-activated protein kinases and activator protein-1 by Ang II may play the key role in cardiovascular and renal diseases. However, there are still unresolved questions and controversies on the mechanism of Ang II-mediated cardiovascular and renal diseases.

992 citations


Journal Article
TL;DR: Alterations of these highly regulated signaling pathways in vascular smooth cells may be pivotal in structural and functional abnormalities that underlie vascular pathological processes in cardiovascular diseases such as hypertension, atherosclerosis, and post-interventional restenosis.
Abstract: Until recently, the signaling events elicited in vascular smooth muscle cells by angiotensin II (Ang II) were considered to be rapid, short-lived, and divided into separate linear pathways, where intracellular targets of the phospholipase C-diacylglycerol-Ca2+ axis were distinct from those of the tyrosine kinase- and mitogen-activated protein kinase- dependent pathways. However, these major intracellular signaling cascades do not function independently and are actively engaged in cross-talk. Downstream signals from the Ang II-bound receptors converge to elicit complex and multiple responses. The exact adapter proteins or “go-between” molecules that link the multiple intracellular pathways await clarification. Ang II induces a multitude of actions in various tissues, and the signaling events following occupancy and activation of angiotensin receptors are tightly controlled and extremely complex. Alterations of these highly regulated signaling pathways in vascular smooth cells may be pivotal in structural and functional abnormalities that underlie vascular pathological processes in cardiovascular diseases such as hypertension, atherosclerosis, and post-interventional restenosis.

918 citations


Journal Article
TL;DR: The potentials, limitations, and challenges within this field of research are discussed, in light of the development of new therapeutic strategies for diseases in which angiogenesis plays an important role.
Abstract: Angiogenesis, or the formation of new blood vessels out of pre-existing capillaries, is a sequence of events that is fundamental to many physiologic and pathologic processes such as cancer, ischemic diseases, and chronic inflammation. With the identification of several proangiogenic molecules such as the vascular endothelial cell growth factor, the fibroblast growth factors (like in FGFs), and the angiopoietins, and the recent description of specific inhibitors of angiogenesis such as platelet factor-4, angiostatin, endostatin, and vasostatin, it is recognized that therapeutic interference with vasculature formation offers a tool for clinical applications in various pathologies. Whereas inhibition of angiogenesis can prevent diseases with excessive vessel growth such as cancer, diabetes retinopathy, and arthritis, stimulation of angiogenesis would be beneficial in the treatment of diseases such as coronary artery disease and critical limb ischemia in diabetes. In this review we highlight the current knowledge on angiogenesis regulation and report on the recent findings in angiogenesis research and clinical studies. We also discuss the potentials, limitations, and challenges within this field of research, in light of the development of new therapeutic strategies for diseases in which angiogenesis plays an important role.

873 citations


Journal Article
TL;DR: This review provides an update on the current body of knowledge regarding the molecular interactions that occur between mercury and various thiol-containing molecules with respect to the mechanisms involved in the renal cellular uptake, accumulation, elimination, and toxicity of mercury.
Abstract: Mercury is unique among the heavy metals in that it can exist in several physical and chemical forms, including elemental mercury, which is a liquid at room temperature. All forms of mercury have toxic effects in a number of organs, especially in the kidneys. Within the kidney, the pars recta of the proximal tubule is the most vulnerable segment of the nephron to the toxic effects of mercury. The biological and toxicological activity of mercurous and mercuric ions in the kidney can be defined largely by the molecular interactions that occur at critical nucleophilic sites in and around target cells. Because of the high bonding affinity between mercury and sulfur, there is particular interest in the interactions that occur between mercuric ions and the thiol group(s) of proteins, peptides and amino acids. Molecular interactions with sulfhydryl groups in molecules of albumin, metallothionein, glutathione, and cysteine have been implicated in mechanisms involved in the proximal tubular uptake, accumulation, transport, and toxicity of mercuric ions. In addition, the susceptibility of target cells in the kidneys to the injurious effects of mercury is modified by a number of intracellular and extracellular factors relating to several thiol-containing molecules. These very factors are the theoretical basis for most of the currently employed therapeutic strategies. This review provides an update on the current body of knowledge regarding the molecular interactions that occur between mercury and various thiol-containing molecules with respect to the mechanisms involved in the renal cellular uptake, accumulation, elimination, and toxicity of mercury.

Journal Article
TL;DR: This review aims to provide an understanding of K(+) channel function at the molecular level in the context of disease processes and discuss the progress, hurdles, challenges, and opportunities in the exploitation of K(* channels as therapeutic targets by pharmacological and emerging genetic approaches.
Abstract: Potassium channels play important roles in vital cellular signaling processes in both excitable and nonexcitable cells. Over 50 human genes encoding various K(+) channels have been cloned during the past decade, and precise biophysical properties, subunit stoichiometry, channel assembly, and modulation by second messenger and ligands have been elucidated to a large extent. Recent advances in genetic linkage analysis have greatly facilitated the identification of many disease-producing loci, and naturally occurring mutations in various K(+) channels have been identified in diseases such as long-QT syndromes, episodic ataxia/myokymia, familial convulsions, hearing and vestibular diseases, Bartter's syndrome, and familial persistent hyperinsulinemic hypoglycemia of infancy. In addition, changes in K(+) channel function have been associated with cardiac hypertrophy and failure, apoptosis and oncogenesis, and various neurodegenerative and neuromuscular disorders. This review aims to 1) provide an understanding of K(+) channel function at the molecular level in the context of disease processes and 2) discuss the progress, hurdles, challenges, and opportunities in the exploitation of K(+) channels as therapeutic targets by pharmacological and emerging genetic approaches.

Journal Article
TL;DR: This work reviews general mechanisms of TEM of PMNs and discusses the nature of PMN recruitment in several models of airway inflammation that illustrate how various stimuli elicit different responses.
Abstract: Leukocyte trafficking into pulmonary tissue and airspaces is a critical component of the host defense response. Activation and migration of polymorphonuclear leukocytes (PMNs) into lungs also contribute to inflammatory tissue injury and remodeling of tissue architecture. There have been considerable advances in our understanding of the mechanisms that control PMN adhesion and transendothelial migration (TEM). Mechanisms of migration unique to the lungs have been described with regard to the profile of adhesion molecules, cytokines, and chemokines elicited during PMN emigration from blood vessels. This work reviews general mechanisms of TEM of PMNs and discusses the nature of PMN recruitment in several models of airway inflammation that illustrate how various stimuli elicit different responses. Pharmacologic manipulation of adhesive interactions between PMNs and endothelial cells is a current area of research aimed at developing pharmacologic agents to control inflammation during pulmonary and other inflammatory diseases. A summary of some of these agents and their actions is presented.

Journal Article
TL;DR: The role of nonsynaptic receptors and transporters in presynaptic modulation of chemical transmission in the central nervous system is reviewed and it will be suggested for the first time that the receptors andTransporters expressed nonsynaptically and being of high affinity are the target of drugs taken by the patient.
Abstract: Neurochemical and morphological evidence has shown that some neurotransmitters or substances may be released from both synaptic and nonsynaptic sites for diffusion to target cells more distant than those observed in regular synaptic transmission. There are functional interactions between neurons without synaptic contacts, and matches between release sites and localization of receptors sensitive to the chemical signal are exceptions rather than the rule in the central nervous system. This also indicates that besides cabled information signaling (through synapses), there is a "wireless" nonsynaptic interaction between axon terminals. This would be a form of communication transitional between discrete classical neurotransmission (in Sherrington's synapse) and the relatively nonspecific neuroendocrine secretion. Recent findings indicate that in addition to monoamines (norepinephrine, dopamine, serotonin), other transmitters, such as acetylcholine and nitric oxide (NO), may also be involved in these nonsynaptic interactions. It has been shown that NO, an ideal mediator of nonsynaptic communication, can influence the function of uptake carrier systems, which may be an important factor in the regulation of extracellular concentration of different transmitters. This review will focus on the role of nonsynaptic receptors and transporters in presynaptic modulation of chemical transmission in the central nervous system. The nonsynaptic interaction between neurons mediated via receptors and transports of high affinity not localized in synapses has the potential to be an important contributor to the properties and function of neuronal networks. In addition, it will be suggested for the first time that the receptors and transporters expressed nonsynaptically and being of high affinity are the target of drugs taken by the patient.

Journal Article
TL;DR: There is accumulating evidence that administration of C1-Inh may have a beneficial effect as well in other clinical conditions such as sepsis, cytokine-induced vascular leak syndrome, acute myocardial infarction, or other diseases.
Abstract: C1-esterase inhibitor (C1-Inh) therapy was introduced in clinical medicine about 25 years ago as a replacement therapy for patients with hereditary angioedema caused by a deficiency of C1-Inh. There is now accumulating evidence, obtained from studies in animals and observations in patients, that administration of C1-Inh may have a beneficial effect as well in other clinical conditions such as sepsis, cytokine-induced vascular leak syndrome, acute myocardial infarction, or other diseases. Activation of the complement system, the contact activation system, and the coagulation system has been observed in these diseases. A typical feature of the contact and complement system is that on activation they give rise to vasoactive peptides such as bradykinin or the anaphylatoxins, which in part explains the proinflammatory effects of either system. C1-Inh, belonging to the superfamily of serine proteinase inhibitors (serpins), is a major inhibitor of the classical complement pathway, the contact activation system, and the intrinsic pathway of coagulation, respectively. It is, therefore, endowed with anti-inflammatory properties. However, inactivation of C1-Inh occurs locally in inflamed tissues by proteolytic enzymes (e.g., elastase) released from activated neutrophils or bacteria thereby leading to increased local activation of the various host defense systems. Here we will give an overview on the biochemistry and biology of C1-Inh. We will discuss studies addressing therapeutic administration of C1-Inh in experimental and clinical conditions. Finally, we will provide an explanation for the therapeutic benefit of C1-Inh in so many different diseases.

Journal Article
TL;DR: Various ligand-binding protein classes are surveyed, including biotin-, lipid-, immunosuppressant-, insect pheromone-, phosphate-, and sulfate-binding proteins, as well as bacterial periplasmic proteins, lectins, serum albumins, immunoglobulins, and inactivated enzymes.
Abstract: Unstable or harmful agents, such as drugs, vitamins, flavors, pheromones, and catalysts, for use in pharmaceutics, personal care, functional foods, crop protection, laboratories, offices, and industrial processes, require stabilization against oxidation and degradation or shielding from sensitive environments. Therefore, binding them to carriers with high affinity and selectivity for targeting to the right environment and subsequent controlled release is beneficial, especially if this allows improved control of (stimulus-induced) release. Proteins often possess one or more of these properties, whereas modern biotechnology and bioinformatics provide an increasing number of tools to engineer and adapt these properties. Carrier systems are now developed that incorporate proteins as the central ligand-binding component, e.g., lectins for glucose-triggered release of glycosylated insulin and bispecific antibodies for brain targeting of drugs, but ligand-binding proteins can potentially be used in many other applications. Collectively, the proteins available in nature bind an impressive variety of ligands and non-natural analogs. In this light, various ligand-binding protein classes are surveyed, including biotin-, lipid-, immunosuppressant-, insect pheromone-, phosphate-, and sulfate-binding proteins, as well as bacterial periplasmic proteins, lectins, serum albumins, immunoglobulins, and inactivated enzymes. Disadvantages, such as enzymatic degradation or immunogenicity, associated with the pharmaceutical use of certain proteins can be avoided by incorporating these proteins in more complex carrier and targeting systems. In other applications, this may not be necessary. The enclosure of high-affinity (potentially stimulus-sensitive) binding proteins within an envelope that acts as a diffusion barrier for the ligand may provide excellent slow release. Many possibilities seem to be as yet unexplored.

Journal Article
Akio Inui1
TL;DR: Observations of mutant mice have shed new light on the understanding of energy homeostasis equation and advanced gene-targeting strategies aimed at specific alterations of a gene product at desired tissues and times could lead to a better understanding of the system.
Abstract: Energy homeostasis is accomplished through a highly integrated and redundant neurohumoral system. Recently, novel molecular mediators and regulatory pathways for feeding and body weight regulation have been identified in the brain and the periphery. Because of the multitude and complexity of disturbances in energy intake, expenditure, and partitioning that are associated with obesity, it has been difficult to determine which abnormalities are causative versus less important phenomena that are consequences of the altered neuroendocrine and metabolic milieu. Transgenic technology has provided new opportunities to modify the complex body weight-regulating system and to assess the relative importance of the individual components. Observations of mutant mice have shed new light on the understanding of energy homeostasis equation. Once created, transgenic animal models may be useful in assessing the efficacy or determining the mode of action of potential new therapeutic agents. However, the interpretation of targeted mutation is sometimes not straightforward in unraveling the physiology because of the redundancy and compensation of the regulatory machinery, as well as the inherent problems of manipulation of the gene. Modifying the synthesis of a particular gene at all sites and developmental stages may be a relatively crude way of investigating its functions. Advanced gene-targeting strategies aimed at specific alterations (on and off) of a gene product at desired tissues and times could lead to a better understanding of the system.

Journal Article
TL;DR: Recently a new class of catalytic nucleic acid made entirely of DNA has emerged through in vitro selection, although rivaling the activity and stability of synthetic ribozymes, are limited equally by inefficient delivery to the intracellular target RNA.
Abstract: Since the discovery of self-cleavage and ligation activity of the group I intron, the expansion of research interest in catalytic nucleic acids has provided a valuable nonprotein resource for manipulating biomolecules. Although a multitude of reactions can be enhanced by this class of catalyst, including trans-splicing activity of the group I intron (which could be applied to gene correction), RNA-cleaving RNA enzymes or "ribozymes" hold center stage because of their tremendous potential for mediating gene inactivation. This application has been driven predominantly by the "hammerhead" and "hairpin" ribozymes as they induce specific RNA cleavage from a very small catalytic domain, allowing delivery either as a transgene expression product or directly as a synthetic oligonucleotide. Although advances in the development of RNA modifications have improved the biological half-life of synthetic ribozymes, their use is restricted by the mechanistic dependence on conserved 2'OH-moieties. Recently a new class of catalytic nucleic acid made entirely of DNA has emerged through in vitro selection. DNA enzymes or deoxyribozyme with extraordinary RNA cleavage activity has already demonstrated their capacity for gene suppression both in vitro and in vivo. These new molecules, although rivaling the activity and stability of synthetic ribozymes, are limited equally by inefficient delivery to the intracellular target RNA. The challenge of in vivo delivery is being addressed with the assessment of a variety of approaches in animal models with the aim of bringing these compounds closer to the clinic.

Journal Article
TL;DR: The genome structures of oncoviruses, lentivIRuses, and spumaviruses are reviewed and examples of vectors derived from these viruses are described.
Abstract: During the past decade, gene therapy has been applied to the treatment of disease in hundreds of clinical trials. Various tools have been developed to deliver genes into human cells; among them, genetically engineered retroviruses are currently the most popular tool for gene delivery. Most of the systems contain vectors that are capable of accommodating genes of interest and helper cells that can provide the viral structural proteins and enzymes to allow for the generation of vector-containing infectious viral particles. Retroviridae is a family of retroviruses that differs in nucleotide and amino acid sequence, genome structure, pathogenicity, and host range. This diversity provides opportunities to use viruses with different biological characteristics to develop different therapeutic applications. Currently, a variety of retroviruses that provide distinct advantages for gene delivery has been modified and used in clinical trials. In this review, the genome structures of oncoviruses, lentiviruses, and spumaviruses are reviewed and examples of vectors derived from these viruses are described. As with any delivery tool, the efficiency, the ability to target certain tissue or cell type, the expression of the gene of interest, and the safety of retroviral-based systems are important for successful application of gene therapy. Significant efforts have been dedicated to these areas of research in recent years. Various modifications have been made to retroviral-based vectors and helper cells to alter gene expression, target delivery, improve viral titers, and increase safety. The principles and design of these modifications are discussed in this review.

Journal Article
TL;DR: The introduction of new short-acting and the first truly long-acting analogs, the development of analogs with increased stability, less variability and perhaps selective action will help to develop more individualized treatment strategies targeted to specific patient characteristics and to achieve further improvements in glycemic control.
Abstract: Tight glucose control is essential to minimize complications in diabetic patients. However, the pharmacokinetic characteristics of the currently available rapid-, intermediate-, and long-acting preparations of human insulin make it almost impossible to achieve sustained normoglycemia. Until recently, improvements in insulin formulations were seriously limited as advances were only achieved in insulin purity, species, and characteristics of the retarding agent. The availability of molecular genetic techniques opened new windows to create insulin analogs by changing the structure of the native protein and to improve the therapeutic properties. The first clinically available insulin analog, Lispro, confirmed the hopes by showing that improved glycemic control can be achieved without an increase in hypoglycemic events. This requires, however, optimal basal insulin replacement, either by multiple daily injections of neutral protein Hagedorn (NPH) insulin or by insulin pump. Evidence suggests that short-acting insulin analogs would be better matched by a true basal insulin than by the erratically absorbed and rather short-acting NPH insulin. Therefore, future availability of long-acting analogs raises the hope to realize the true potential benefits of the currently available short-acting analog, Lispro, and of those still awaiting approval. The introduction of new short-acting and the first truly long-acting analogs, the development of analogs with increased stability, less variability and perhaps selective action will help to develop more individualized treatment strategies targeted to specific patient characteristics and to achieve further improvements in glycemic control.

Journal Article
TL;DR: The main aim of this review is to examine the current understanding of the crucial contribution that several growth factors may have on transformation, tumorigenesis, and progression in several human tumors among the most widespread in western countries.
Abstract: The processes of cellular proliferation and progressive acquisition of a specialized phenotype show a high degree of coordination. In particular, these complex signaling networks mediating cell growth, differentiation, migration, and apoptosis are regulated in part by polypeptide growth factors that can act, by autocrine and/or paracrine mechanisms of action, as positive or negative modulators. Because these growth factors are unable to cross the hydrophobic cell membrane, they exert their effects via binding to cell surface receptors, most of which possess intrinsic tyrosine kinase activity. Owing to the interaction of polypeptide growth factors with their specific transmembrane receptors, a cascade of intracellular biochemical signals, resulting in the activation and repression of various subsets of genes, is triggered. One of the major incentives for studying factors that regulate processes of proliferation and differentiation is the recognition of their involvement in tumorigenesis. Genetic aberrations in growth factors signaling pathways are, in fact, inextricably linked to cancer. Malignant cells arise as a result of a stepwise progression of genetic events characterized by the unregulated expression of growth factors or components of their signaling networks. The main aim of this review is to examine the current understanding of the crucial contribution that several growth factors may have on transformation, tumorigenesis, and progression in several human tumors among the most widespread in western countries. For this purpose, we will analyze the chemistry and the molecular organization of the most important growth factors and their specific receptors. In addition, we will focus on the mechanisms of signal transduction, the complex cascade of biochemical events ensued from the growth factor/receptor binding. The present knowledge of the role of growth factor biochemical signaling networks in cancer leads to improvements not only in diagnosis and prognosis for this disease, but also for new and more targeted therapeutic intervention. The second part of this review will focus on the novel pharmacological approaches for cancer therapy that have been developed already or are being developed with the aim to specifically interfere at various steps of the growth factors signaling pathways.

Journal Article
TL;DR: The role of genes involved in repair processes and in checkpoint control are outlined, with specific reference to genes regulating radiation-sensitivity, and this fast-moving field shows promise as a novel and potentially useful method for development of target-specific therapeutic approaches.
Abstract: The fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae have become valuable tools for the study of basic cellular functions of eukaryotic cells, including DNA repair mechanisms and cell cycle control. Since the major signaling pathways and cellular processes involved in cellular response to cytotoxic agents are conserved between yeasts and mammalian cells, these simple eukaryotic systems could be excellent models for the identification of molecular/cellular mechanisms of sensitivity to antitumor drugs. We describe relevant biological features of yeast cells and potential applications derived by their genetic manipulation. In particular, we have outlined the role of genes involved in repair processes and in checkpoint control, with specific reference to genes regulating radiation-sensitivity. Specific examples are provided concerning the use of both yeasts in understanding the mechanism of action of platinum compounds and topoisomerase inhibitors. The availability of the genomic sequence of these organisms as well as of new technologies (microarrays, proteomics) is expected to allow the identification of potential drug targets, since the drug discovery process is moving toward a genomic orientation. Among eukaryotic organisms, yeasts are suitable for easy genetic manipulations, and specific genetic alterations are exploitable for assessing the effects of chemotherapeutic agents with different mechanism of action. Although still at an early stage, this fast-moving field shows promise as a novel and potentially useful method for development of target-specific therapeutic approaches.