scispace - formally typeset
Search or ask a question

Showing papers in "Plant Cell and Environment in 2018"


Journal ArticleDOI
TL;DR: Intensive efforts are currently underway to improve crop yields with lower input requirements and enhance the sustainability of yield through improved biotic and abiotic stress tolerance traits.
Abstract: Food security and the protection of the environment are urgent issues for global society, particularly with the uncertainties of climate change. Changing climate is predicted to have a wide range of negative impacts on plant physiology metabolism, soil fertility and carbon sequestration, microbial activity and diversity that will limit plant growth and productivity, and ultimately food production. Ensuring global food security and food safety will require an intensive research effort across the food chain, starting with crop production and the nutritional quality of the food products. Much uncertainty remains concerning the resilience of plants, soils, and associated microbes to climate change. Intensive efforts are currently underway to improve crop yields with lower input requirements and enhance the sustainability of yield through improved biotic and abiotic stress tolerance traits. In addition, significant efforts are focused on gaining a better understanding of the root/soil interface and associated microbiomes, as well as enhancing soil properties.

188 citations


Journal ArticleDOI
TL;DR: A series of molecular, biochemical, and genetic analysis suggested that MdBT2 degraded MdbZIP44 protein through the Ubiquitin-26S proteasome system, thus inhibiting Mdb ZIP44-modulated anthocyanin biosynthesis.
Abstract: Phytohormone abscisic acid (ABA) induces anthocyanin biosynthesis; however, the underlying molecular mechanism is less known. In this study, we found that the apple MYB transcription factor MdMYB1 activated anthocyanin biosynthesis in response to ABA. Using a yeast screening technique, we isolated MdbZIP44, an ABA-induced bZIP transcription factor in apple, as a co-partner with MdMYB1. MdbZIP44 promoted anthocyanin accumulation in response to ABA by enhancing the binding of MdMYB1 to the promoters of downstream target genes. Furthermore, we identified MdBT2, a BTB protein, as an MdbZIP44-interacting protein. A series of molecular, biochemical, and genetic analysis suggested that MdBT2 degraded MdbZIP44 protein through the Ubiquitin-26S proteasome system, thus inhibiting MdbZIP44-modulated anthocyanin biosynthesis. Taken together, we reveal a novel working mechanism of MdbZIP44-mediated anthocyanin biosynthesis in response to ABA.

171 citations


Journal ArticleDOI
TL;DR: The findings showed the promising significance because biochar added at an optimal level (≤5%) could be a feasible option to reclaim the degraded coastal soil, enhance plant growth and production, and increase soil health and food security.
Abstract: Soil health is essential and irreplaceable for plant growth and global food production, which has been threatened by climate change and soil degradation. Degraded coastal soils are urgently required to reclaim using new sustainable technologies. Interest in applying biochar to improve soil health and promote crop yield has rapidly increased because of its multiple benefits. However, effects of biochar addition on the saline–sodic coastal soil health and halophyte growth were poorly understood. Response of two halophytes, Sesbania (Sesbania cannabina) and Seashore mallow (Kosteletzkya virginica), to the individual or co-application of biochar and inorganic fertilizer into a coastal soil was investigated using a 52 d pot experiment. The biochar alone or co-application stimulated the plant growth (germination, root development, and biomass), primarily attributed to the enhanced nutrient availability from the biochar-improved soil health. Additionally, the promoted microbial activities and bacterial community shift towards the beneficial taxa (e.g. Pseudomonas and Bacillus) in the rhizosphere also contributed to the enhanced plant growth and biomass. Our findings showed the promising significance because biochar added at an optimal level (≤5%) could be a feasible option to reclaim the degraded coastal soil, enhance plant growth and production, and increase soil health and food security.

168 citations


Journal ArticleDOI
TL;DR: The potential of genetic engineering as a strategy to improve the phytoremediation capacity of plants in the context of heavy metals and metalloids is considered, using recent case studies to demonstrate the practical application in the field.
Abstract: The genetic engineering of plants to facilitate the reclamation of soils and waters contaminated with inorganic pollutants is a relatively new and evolving field, benefiting from the heterologous expression of genes that increase the capacity of plants to mobilize, stabilize and/or accumulate metals. The efficiency of phytoremediation relies on the mechanisms underlying metal accumulation and tolerance, such as metal uptake, translocation and detoxification. The transfer of genes involved in any of these processes into fast-growing, high-biomass crops may improve their reclamation potential. The successful phytoextraction of metals/metalloids and their accumulation in aerial organs have been achieved by expressing metal ligands or transporters, enzymes involved in sulfur metabolism, enzymes that alter the chemical form or redox state of metals/metalloids and even the components of primary metabolism. This review article considers the potential of genetic engineering as a strategy to improve the phytoremediation capacity of plants in the context of heavy metals and metalloids, using recent case studies to demonstrate the practical application of this approach in the field.

146 citations


Journal ArticleDOI
TL;DR: There is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.
Abstract: Stomatal conductance (gs ) and mesophyll conductance (gm ) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf ) across species, under both steady-state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf , gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2 O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf , and anatomical traits varied widely across species. Under light-saturated conditions, the A, gs , gm , and Kleaf were strongly correlated across species. However, the response patterns of A, gs , gm , and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark-adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light-adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.

136 citations


Journal ArticleDOI
TL;DR: Fruits grown under spectral filters that altered transmission of solar UV light showed that UV induced changes in physiology, metabolism, and gene expression levels during development over a season, and these changes were sustained after storage.
Abstract: Ultraviolet-B light (UV-B) is one environmental signal perceived by plants that affects the flavonoid pathway and influences the levels of anthocyanins, flavonols, and proanthocyanidins. To understand the mechanisms underlying UV exposure, apple trees were grown under spectral filters that altered transmission of solar UV light. Fruit analysis showed that UV induced changes in physiology, metabolism, and gene expression levels during development over a season. These changes were sustained after storage. Under low UV, ripening was delayed, fruit size decreased, and anthocyanin and flavonols were reduced. Expression analysis showed changes in response to UV light levels for genes in the regulation and biosynthesis of anthocyanin and flavonols. Transcription of flavonol synthase (FLS), ELONGATED HYPOCOTYL 5 (HY5), MYB10, and MYB22 were down-regulated throughout fruit development under reduced UV. Functional testing showed that the FLS promoter was activated by HY5, and this response was enhanced by the presence of MYB22. The MYB22 promoter can also be activated by the anthocyanin regulator, MYB10. As ambient levels of UV light vary around the globe, this study has implications for future crop production, the quality of which can be determined by the response to UV.

131 citations


Journal ArticleDOI
TL;DR: It is found that exposure to blue light and overexpression of CRY1a are associated with increased accumulation of anthocyanin in tomato (Solanum lycopersicum L.) and these responses are the result of changes in mRNA and the protein levels of SlHY5, which is a transcription factor.
Abstract: The production of anthocyanin is regulated by light and corresponding photoreceptors. In this study, we found that exposure to blue light and overexpression of CRY1a are associated with increased accumulation of anthocyanin in tomato (Solanum lycopersicum L.). These responses are the result of changes in mRNA and the protein levels of SlHY5, which is a transcription factor. In vitro and in vivo experiments using electrophoretic mobility shift assay and ChIP-qPCR assays revealed that SlHY5 could directly recognize and bind to the G-box and ACGT-containing element in the promoters of anthocyanin biosynthesis genes, such as chalcone synthase 1, chalcone synthase 2, and dihydroflavonol 4-reductase. Silencing of SlHY5 in OE-CRY1a lines decreased the accumulation of anthocyanin. The findings presented here not only deepened our understanding of how light controls anthocyanin biosynthesis and associated photoprotection in tomato leaves, but also allowed us to explore potential targets for improving pigment production.

120 citations


Journal ArticleDOI
TL;DR: The current understanding of miRNA-mediated modulation of the expression of key genes as well as genetic and regulatory pathways, involved in low temperature stress responses in plants are summarized.
Abstract: Low temperature is one of the most common environmental stresses that seriously affect the growth and development of plants. However, plants have the plasticity in their defence mechanisms enabling them to tolerate and, sometimes, even survive adverse environmental conditions. MicroRNAs (miRNAs) are small non-coding RNAs, approximately 18-24 nucleotides in length, and are being increasingly recognized as regulators of gene expression at the post-transcriptional level and have the ability to influence a broad range of biological processes. There is growing evidence in the literature that reprogramming of gene expression mediated through miRNAs is a major defence mechanism in plants enabling them to respond to stresses. To date, numerous studies have established the importance of miRNA-based regulation of gene expression under low temperature stress. Individual miRNAs can modulate the expression of multiple mRNA targets, and, therefore, the manipulation of a single miRNA has the potential to affect multiple biological processes. Numerous functional studies have attempted to identify the miRNA-target interactions and have elaborated the role of several miRNAs in cold-stress regulation. This review summarizes the current understanding of miRNA-mediated modulation of the expression of key genes as well as genetic and regulatory pathways, involved in low temperature stress responses in plants.

119 citations


Journal ArticleDOI
TL;DR: Evidence for crosstalk between SLs and other phytohormones in responses to abiotic stresses suggests that SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytOHormones.
Abstract: Phytohormones play central roles in boosting plant tolerance to environmental stresses, which negatively affect plant productivity and threaten future food security. Strigolactones (SLs), a class of carotenoid-derived phytohormones, were initially discovered as an "ecological signal" for parasitic seed germination and establishment of symbiotic relationship between plants and beneficial microbes. Subsequent characterizations have described their functional roles in various developmental processes, including root development, shoot branching, reproductive development, and leaf senescence. SLs have recently drawn much attention due to their essential roles in the regulation of various physiological and molecular processes during the adaptation of plants to abiotic stresses. Reports suggest that the production of SLs in plants is strictly regulated and dependent on the type of stresses that plants confront at various stages of development. Recently, evidence for crosstalk between SLs and other phytohormones, such as abscisic acid, in responses to abiotic stresses suggests that SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Moreover, the prospective roles of SLs in the management of plant growth and development under adverse environmental conditions have been suggested. In this review, we provide a comprehensive discussion pertaining to SL-mediated plant responses and adaptation to abiotic stresses.

114 citations


Journal ArticleDOI
TL;DR: Investigating key hydraulic and carbon economy traits of 12 woody species in Australia from a broad climatic gradient found that hydraulic traits were highly coordinated across species and strongly related to rainfall and aridity in the species native distributional range.
Abstract: Plant hydraulic traits capture the impacts of drought stress on plant function, yet vegetation models lack sufficient information regarding trait coordination and variation with climate-of-origin across species. Here, we investigated key hydraulic and carbon economy traits of 12 woody species in Australia from a broad climatic gradient, with the aim of identifying the coordination among these traits and the role of climate in shaping cross-species trait variation. The influence of environmental variation was minimized by a common garden approach, allowing us to factor out the influence of environment on phenotypic variation across species. We found that hydraulic traits (leaf turgor loss point, stomatal sensitivity to drought [Pgs ], xylem vulnerability to cavitation [Px ], and branch capacitance [Cbranch ]) were highly coordinated across species and strongly related to rainfall and aridity in the species native distributional range. In addition, trade-offs between drought tolerance and plant growth rate were observed across species. Collectively, these results provide critical insight into the coordination among hydraulic traits in modulating drought adaptation and will significantly advance our ability to predict drought vulnerability in these dominant trees species.

112 citations


Journal ArticleDOI
TL;DR: It is suggested that species more vulnerable to drought were more likely to have succumbed to hydraulic failure belowground and large losses of spring and summer whole-tree conductance were associated with species that exhibited greater mortality.
Abstract: From 2011 to 2013, Texas experienced its worst drought in recorded history. This event provided a unique natural experiment to assess species-specific responses to extreme drought and mortality of four co-occurring woody species: Quercus fusiformis, Diospyros texana, Prosopis glandulosa, and Juniperus ashei. We examined hypothesized mechanisms that could promote these species' diverse mortality patterns using postdrought measurements on surviving trees coupled to retrospective process modelling. The species exhibited a wide range of gas exchange responses, hydraulic strategies, and mortality rates. Multiple proposed indices of mortality mechanisms were inconsistent with the observed mortality patterns across species, including measures of the degree of iso/anisohydry, photosynthesis, carbohydrate depletion, and hydraulic safety margins. Large losses of spring and summer whole-tree conductance (driven by belowground losses of conductance) and shallower rooting depths were associated with species that exhibited greater mortality. Based on this retrospective analysis, we suggest that species more vulnerable to drought were more likely to have succumbed to hydraulic failure belowground.

Journal ArticleDOI
TL;DR: A negative correlation between OsCKX2 expression and plant productivity is found as evident by assessment of agronomical parameters such as panicle branching, filled grains per plant and harvest index both under control and salinity stress conditions.
Abstract: Cytokinins play a significant role in determining grain yield in plants. Cytokinin oxidases catalyse irreversible degradation of cytokinins and hence modulate cellular cytokinin levels. Here, we studied the role of an inflorescence meristem-specific rice cytokinin oxidase - OsCKX2 - in reducing yield penalty under salinity stress conditions. We utilized an RNAi-based approach to study the function of OsCKX2 in maintaining grain yield under salinity stress condition. Ultra-performance liquid chromatography-based estimation revealed a significant increase in cytokinins in the inflorescence meristem of OsCKX2-knockdown plants. To determine if there exists a correlation between OsCKX2 levels and yield under salinity stress condition, we assessed the growth, physiology and grain yield of OsCKX2-knockdown plants vis-a-vis the wild type. OsCKX2-knockdown plants showed better vegetative growth, higher relative water content and photosynthetic efficiency and reduced electrolyte leakage as compared with the wild type under salinity stress. Importantly, we found a negative correlation between OsCKX2 expression and plant productivity as evident by assessment of agronomical parameters such as panicle branching, filled grains per plant and harvest index both under control and salinity stress conditions. These results suggest that OsCKX2, via controlling cytokinin levels, regulates floral primordial activity modulating rice grain yield under normal as well as abiotic stress conditions.

Journal ArticleDOI
TL;DR: Direct and reciprocal crosses indicate that pollen was more sensitive with larger decreases in seed set percentage than pistil under HT stress, because it is more susceptible to oxidative damage than Pistil.
Abstract: High temperature (HT) decreases seed-set percentage in sorghum [Sorghum bicolor (L.) Moench]. The relative sensitivity of pollen and particularly pistil and the mechanistic response that induces tolerance or susceptibility to HT is not well known and hence is the major objective of this research. The male sterile (ATx399) and fertile (RTx430) lines were exposed to 30/20 °C (optimum temperature; OT), 36/26 °C (HT1) and 39/29 °C (HT2) from the start of booting to seed-set in a controlled environment. Similarly, in the field, HT stress was imposed using heat tents. HT stress decreased pollen germination. Relatively high levels of reactive oxygen species, and decreased antioxidant enzyme activity and phospholipid unsaturation were observed in pollen compared to pistil under HT. The severe cell organelle damage was observed in pollen and pistil at 36/26 and 39/29 °C, respectively. The seed-set percentage was higher in HT stressed pistil pollinated with OT pollen. Direct and reciprocal crosses indicate that pollen was relatively more sensitive with larger decreases in seed-set percentage than pistil under HT stress. The negative impact was greater in pollen than pistil at relatively lower temperatures. Overall, pollen was relatively more sensitive than pistil to HT stress because it is more susceptible to oxidative damage than pistil.

Journal ArticleDOI
TL;DR: The effects of e[CO2 ] on photosynthesis and stomatal conductance are discussed and changes in other cellular mechanisms and growth processes at e[ CO2 ] in relation to plant growth and development are focused on.
Abstract: Rising atmospheric carbon dioxide concentration ([CO2]) significantly influences plant growth, development, and biomass. Increased photosynthesis rate, together with lower stomatal conductance, has been identified as the key factors that stimulate plant growth at elevated [CO2] (e[CO2]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO2] is always associated with post‐photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions, and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO2], despite the emerging evidence of e[CO2]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO2] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO2] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO2] have been identified with the aim of improving crop productivity under a CO2 rich atmosphere.

Journal ArticleDOI
TL;DR: Evidence for the indispensability of ATP in the degradation and synthesis of D1 during the repair of PSII is summarized and new terms relevant to the regulation of the PSII repair, namely, "ATP- dependent regulation" and "redox-dependent regulation," are introduced.
Abstract: Repair of photosystem II (PSII) during photoinhibition involves replacement of photodamaged D1 protein by newly synthesized D1 protein. In this review, we summarize evidence for the indispensability of ATP in the degradation and synthesis of D1 during the repair of PSII. Synthesis of one molecule of the D1 protein consumes more than 1,300 molecules of ATP equivalents. The degradation of photodamaged D1 by FtsH protease also consumes approximately 240 molecules of ATP. In addition, ATP is required for several other aspects of the repair of PSII, such as transcription of psbA genes. These requirements for ATP during the repair of PSII have been demonstrated by experiments showing that the synthesis of D1 and the repair of PSII are interrupted by inhibitors of ATP synthase and uncouplers of ATP synthesis, as well as by mutation of components of ATP synthase. We discuss the contribution of cyclic electron transport around photosystem I to the repair of PSII. Furthermore, we introduce new terms relevant to the regulation of the PSII repair, namely, "ATP-dependent regulation" and "redox-dependent regulation," and we discuss the possible contribution of the ATP-dependent regulation of PSII repair under environmental stress.

Journal ArticleDOI
TL;DR: Exressed sequence comparisons in contrasting ST wheat genotypes identified several non-synonymous/missense mutation sites that are contributory to the ST trait variations, indicating the biological relevance of these polymorphisms that can be exploited in breeding for ST in wheat.
Abstract: The increasing salinization of agricultural lands is a threat to global wheat production. Understanding of the mechanistic basis of salt tolerance (ST) is essential for developing breeding and selection strategies that would allow for increased wheat production under saline conditions to meet the increasing global demand. We used a set that consists of 150 internationally derived winter and facultative wheat cultivars genotyped with a 90K SNP chip and phenotyped for ST across three growth stages and for ionic (leaf K+ and Na+ contents) traits to dissect the genetic architecture regulating ST in wheat. Genome-wide association mapping revealed 187 Single Nucleotide Polymorphism (SNPs) (R2 = 3.00-30.67%), representing 37 quantitative trait loci (QTL), significantly associated with the ST traits. Of these, four QTL on 1BS, 2AL, 2BS and 3AL were associated with ST across the three growth stages and with the ionic traits. Novel QTL were also detected on 1BS and 1DL. Candidate genes linked to these polymorphisms were uncovered, and expression analyses were performed and validated on them under saline and non-saline conditions using transcriptomics and qRT-PCR data. Expressed sequence comparisons in contrasting ST wheat genotypes identified several non-synonymous/missense mutation sites that are contributory to the ST trait variations, indicating the biological relevance of these polymorphisms that can be exploited in breeding for ST in wheat.

Journal ArticleDOI
TL;DR: The results suggest that drought significantly modified root morphological traits and increased root mortality, and the drought-induced decrease in root biomass was less than shoot biomass, causing higher root:shoot mass ratio.
Abstract: Extreme drought is likely to become more frequent and intense as a result of global climate change, which may significantly impact plant root traits and responses (i.e., morphology, production, turnover, and biomass). However, a comprehensive understanding of how drought affects root traits and responses remains elusive. Here, we synthesized data from 128 published studies under field conditions to examine the responses of 17 variables associated with root traits to drought. Our results showed that drought significantly decreased root length and root length density by 38.29% and 11.12%, respectively, but increased root diameter by 3.49%. However, drought significantly increased root:shoot mass ratio and root cortical aerenchyma by 13.54% and 90.7%, respectively. Our results suggest that drought significantly modified root morphological traits and increased root mortality, and the drought-induced decrease in root biomass was less than shoot biomass, causing higher root:shoot mass ratio. The cascading effects of drought on root traits and responses may need to be incorporated into terrestrial biosphere models to improve prediction of the climate-biosphere feedback.

Journal ArticleDOI
TL;DR: It is found that glyoxalase-overexpression imparts tolerance towards abiotic stresses like salinity, drought and heat and also provides resistance towards damage caused by the sheath blight fungus (Rhizoctonia solani) toxin phenylacetic acid.
Abstract: Crop plants face a multitude of diverse abiotic and biotic stresses in the farmers' fields. Although there now exists a considerable knowledge of the underlying mechanisms of response to individual stresses, the crosstalk between response pathways to various abiotic and biotic stresses remains enigmatic. Here, we investigated if the cytotoxic metabolite methylglyoxal (MG), excess of which is generated as a common consequence of many abiotic and biotic stresses, may serve as a key molecule linking responses to diverse stresses. For this, we generated transgenic rice plants overexpressing the entire two-step glyoxalase pathway for MG detoxification. Through assessment of various morphological, physiological and agronomic parameters, we found that glyoxalase-overexpression imparts tolerance towards abiotic stresses like salinity, drought and heat and also provides resistance towards damage caused by the sheath blight fungus (Rhizoctonia solani) toxin phenylacetic acid. We show that the mechanism of observed tolerance of the glyoxalase-overexpressing plants towards these diverse abiotic and biotic stresses involves improved MG detoxification and reduced oxidative damage leading to better protection of chloroplast and mitochondrial ultrastructure and maintained photosynthetic efficiency under stress conditions. Together, our findings indicate that MG may serve as a key link between abiotic and biotic stress response in plants.

Journal ArticleDOI
TL;DR: Data suggest that TaHsfC2a-B is a transcriptional activator of heat protection genes and serves as a proactive mechanism for heat protection in developing wheat grains via the ABA-mediated regulatory pathway.
Abstract: High temperature at grain filling can severely reduce wheat yield. Heat shock factors (Hsfs) are central regulators in heat acclimation. This study investigated the role of TaHsfC2a, a member of the monocot-specific HsfC2 subclass, in the regulation of heat protection genes in Triticum aestivum. Three TaHsfC2a homoeologous genes were highly expressed in wheat grains during grain filling and showed only transient up-regulation in the leaves by heat stress but were markedly up-regulated by drought and abscisic acid (ABA) treatment. Overexpression of TaHsfC2a-B in transgenic wheat resulted in up-regulation of a suite of heat protection genes (e.g. TaHSP70d and TaGalSyn). Most TaHsfC2a-B target genes were heat, drought and ABA inducible. Transactivation analysis of two representative targets (TaHSP70d and TaGalSyn) showed that TaHsfC2a-B activated expression of reporters driven by these target promoters. Promoter mutagenesis analyses revealed that heat shock element is responsible for transactivation by TaHsfC2a-B and heat/drought induction. TaHsfC2a-B-overexpressing wheat showed improved thermotolerance but not dehydration tolerance. Most TaHsfC2a-B target genes were co-up-regulated in developing grains with TaHsfC2a genes. These data suggest that TaHsfC2a-B is a transcriptional activator of heat protection genes and serves as a proactive mechanism for heat protection in developing wheat grains via the ABA-mediated regulatory pathway.

Journal ArticleDOI
TL;DR: An overview of the recent achievements regarding abiotic stress resistance in a wide range of legume crops is provided and the transcriptomic and miRNA approaches that have been used are highlighted.
Abstract: Grain legumes are an important source of nutrition and income for billions of consumers and farmers around the world. However, the low productivity of new legume varieties, due to the limited genetic diversity available for legume breeding programmes and poor policymaker support, combined with an increasingly unpredictable global climate is resulting in a large gap between current yields and the increasing demand for legumes as food. Hence, there is a need for novel approaches to develop new high-yielding legume cultivars that are able to cope with a range of environmental stressors. Next-generation technologies are providing the tools that could enable the more rapid and cost-effective genomic and transcriptomic studies for most major crops, allowing the identification of key functional and regulatory genes involved in abiotic stress resistance. In this review, we provide an overview of the recent achievements regarding abiotic stress resistance in a wide range of legume crops and highlight the transcriptomic and miRNA approaches that have been used. In addition, we critically evaluate the availability and importance of legume genetic resources with desirable abiotic stress resistance traits.

Journal ArticleDOI
TL;DR: It is demonstrated that overexpression of AuTophaGy (ATG) protein MdATG18a enhances tolerance to N-deficiencies and plays positive roles in anthocyanin biosynthesis through greater autophagic activity.
Abstract: Nitrogen (N) availability is an essential factor for plant growth. Recycling and remobilization of N have strong impacts on crop yield and quality under N deficiency. Autophagy is a critical nutrient-recycling process that facilitates remobilization under starvation. We previously showed that an important AuTophaGy (ATG) protein from apple, MdATG18a, has a positive role in drought tolerance. In this study, we explored its biological role in response to low-N. Overexpression of MdATG18a in both Arabidopsis and apple improved tolerance to N-depletion and caused a greater accumulation of anthocyanin. The increased anthocyanin concentration in transgenic apple was possibly due to up-regulating flavonoid biosynthetic and regulatory genes (MdCHI, MdCHS, MdANS, MdPAL, MdUFGT, and MdMYB1) and higher soluble sugars concentration. MdATG18a overexpression enhanced starch degradation with up-regulating amylase gene (MdAM1) and up-regulated sugar metabolism related genes (MdSS1, MdHXKs, MdFK1, and MdNINVs). Furthermore, MdATG18a functioned in nitrate uptake and assimilation by up-regulating nitrate reductase MdNIA2 and 3 high-affinity nitrate transporters MdNRT2.1/2.4/2.5. MdATG18a overexpression also elevated other important MdATG genes expression and autophagosomes formation under N-depletion, which play key contributions to above changes. Together, these results demonstrate that overexpression of MdATG18a enhances tolerance to N-deficiencies and plays positive roles in anthocyanin biosynthesis through greater autophagic activity.

Journal ArticleDOI
TL;DR: This study suggests that BR enhances chilling tolerance through a signalling cascade involving RBOH1, GRXs, and 2-Cys Prx in tomato.
Abstract: Brassinosteroids (BRs) regulate plant development and stress response. Although much has been learned about their roles in plant development, the mechanisms by which BRs regulate plant stress tolerance remain unclear. Chilling is a major stress that adversely affects plant growth. Here, we report that BR positively regulates chilling tolerance in tomato. BR partial deficiency aggravated chilling-induced oxidized protein accumulation, membrane lipid peroxidation, and decrease of maximum quantum efficiency of photosystem II (Fv/Fm). By contrast, overexpression of BR biosynthetic gene Dwarf or treatment with 24-epibrassinolide (EBR) attenuated chilling-induced oxidative damages and resulted in an increase of Fv/Fm. BR increased transcripts of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and GLUTAREDOXIN (GRX) genes, and BR-induced chilling tolerance was associated with an increase in the ratio of reduced/oxidized 2-cysteine peroxiredoxin (2-Cys Prx) and activation of antioxidant enzymes. However, RBOH1-RNAi plants failed to respond to EBR as regards to the induction of GRX genes, activation of antioxidant capacity, and attenuation of chilling-induced oxidative damages. Furthermore, silencing of GRXS12 and S14 compromised EBR-induced increases in the ratio of reduced/oxidized 2-Cys Prx and activities of antioxidant enzymes. Our study suggests that BR enhances chilling tolerance through a signalling cascade involving RBOH1, GRXs, and 2-Cys Prx in tomato.

Journal ArticleDOI
TL;DR: Diversity panel analysis showed the presence of cation transporters and transcription factors with a known role in salinity tolerance and those that hitherto were not known to be involved in salt stress, pointing to components of the ubiquitination pathway as important sources of genetic diversity that could underpin phenotypic variation in stress tolerance.
Abstract: Salinity is an ever increasing menace that affects agriculture worldwide. Crops such as rice are salt sensitive, but its degree of susceptibility varies widely between cultivars pointing to extensive genetic diversity that can be exploited to identify genes and proteins that are relevant in the response of rice to salt stress. We used a diversity panel of 306 rice accessions and collected phenotypic data after short (6 h), medium (7 d) and long (30 d) salinity treatment (50 mm NaCl). A genome-wide association study (GWAS) was subsequently performed, which identified around 1200 candidate genes from many functional categories, but this was treatment period dependent. Further analysis showed the presence of cation transporters and transcription factors with a known role in salinity tolerance and those that hitherto were not known to be involved in salt stress. Localization analysis of single nucleotide polymorphisms (SNPs) showed the presence of several hundred non-synonymous SNPs (nsSNPs) in coding regions and earmarked specific genomic regions with increased numbers of nsSNPs. It points to components of the ubiquitination pathway as important sources of genetic diversity that could underpin phenotypic variation in stress tolerance.

Journal ArticleDOI
TL;DR: Data indicated that distinct transcript splicing regulation patterns, together with subcellular compartmentation of CsLIS/NE-1 and Cs LIS/ NE-2 implemented the linalool biosynthesis regulation in tea plants in responding to endogenous and exogenous regulatory factors.
Abstract: Volatile terpenoids produced in tea plants (Camellia sinensis) are airborne signals interacting against other ecosystem members, but also pleasant odorants of tea products. Transcription regulation (including transcript processing) is pivotal for plant volatile terpenoid production. In this study, a terpene synthase gene CsLIS/NES was recovered from tea plants (C. sinensis cv. ‘Long-Men Xiang’). CsLIS/NES transcription regulation resulted in two splicing forms: CsLIS/NES-1 and CsLIS/NES-2 lacking a 305 bp-fragment at N-terminus, both producing (E)-nerolidol and linalool in vitro. Transgenic tobacco studies and a gene-specific antisense oligo-deoxynucleotide (AsODN) suppression applied in tea leaves indicated that CsLIS/NES-1, localized in chloroplasts, acted as linalool synthase while CsLIS/NES-2 localized in cytosol, functioned as a potential nerolidol synthase, but not linalool synthase. Expression patterns of the two transcript isoforms in tea were distinctly different and responded differentially to the application of stress signal molecule methyl jasmonate (MeJA). Leaf expression of CsLIS/NES-1, but not CsLIS/NES-2, was significantly induced by MeJA. Our data indicated that distinct transcript splicing regulation patterns, together with subcellular compartmentation of CsLIS/NE-1 and CsLIS/NE-2 implemented the linalool biosynthesis regulation in tea plants in responding to endogenous and exogenous regulatory factors.

Journal ArticleDOI
TL;DR: It is argued that a better description ofRubisco mechanism is still required to better understand the link between CO2 and O2 reactivity and the rationale of Rubisco diversification and evolution.
Abstract: Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the most widespread carboxylating enzyme in autotrophic organisms. Its kinetic and structural properties have been intensively studied for more than half a century. Yet important aspects of the catalytic mechanism remain poorly understood, especially the oxygenase reaction. Because of its relatively modest turnover rate (a few catalytic events per second) and the competitive inhibition by oxygen, Rubisco is often viewed as an inefficient catalyst for CO2 fixation. Considerable efforts have been devoted to improving its catalytic efficiency, so far without success. In this review, we re-examine Rubisco's catalytic performance by comparison with other chemically related enzymes. We find that Rubisco is not especially slow. Furthermore, considering both the nature and the complexity of the chemical reaction, its kinetic properties are unremarkable. Although not unique to Rubisco, oxygenation is not systematically observed in enolate and enamine forming enzymes and cannot be considered as an inevitable consequence of the mechanism. It is more likely the result of a compromise between chemical and metabolic imperatives. We argue that a better description of Rubisco mechanism is still required to better understand the link between CO2 and O2 reactivity and the rationale of Rubisco diversification and evolution.

Journal ArticleDOI
TL;DR: A comprehensive Cicer arietinum Gene Expression Atlas (CaGEA) is presented across different plant developmental stages and organs covering the entire life cycle of chickpea to infer significant differences in gene expression patterns contributing in the process of flowering, nodulation, and seed and root development.
Abstract: Chickpea is one of the world's largest cultivated food legume and is an excellent source of high‐quality protein to the human diet. Plant growth and development are controlled by programmed expression of a suite of genes at the given time, stage and tissue. Understanding how the underlying genome sequence translates into specific plant phenotypes at key developmental stages, information on gene expression patterns is crucial. Here we present a comprehensive Cicer arietinum Gene Expression Atlas (CaGEA) across the plant developmental stages and organs covering the entire life cycle of chickpea. One of the widely used drought tolerant cultivar, ICC 4958 has been used to generate RNA‐Seq data from 27 samples at five major developmental stages of the plant. A total of 816 million raw reads were generated and of these, 794 million filtered reads after QC were subjected to downstream analysis. A total of 15,947 unique number of differentially expressed genes across different pairwise tissue combinations were identified. Significant differences in gene expression patterns contributing in the process of flowering, nodulation, seed and root development were inferred in this study. Furthermore, differentially expressed candidate genes from “QTL‐hotspot” region associated with drought stress response in chickpea were validated.

Journal ArticleDOI
TL;DR: It is hypothesized that preferential allocation of P to photosynthetic mesophyll cells is an important trait in species adapted to extremely P-impoverished habitats, contributing to their high PPUE, and that these patterns cannot be generalized across families.
Abstract: Plants allocate nutrients to specific leaf cell types; eudicots are thought to predominantly allocate phosphorus (P) to epidermal/bundle sheath cells. However, three Proteaceae species have been shown to preferentially allocate P to mesophyll cells instead. These Proteaceae species are highly adapted to P-impoverished habitats, with exceptionally high photosynthetic P-use efficiencies (PPUE). We hypothesized that preferential allocation of P to photosynthetic mesophyll cells is an important trait in species adapted to extremely P-impoverished habitats, contributing to their high PPUE. We used elemental X-ray mapping to determine leaf cell-specific nutrient concentrations for 12 Proteaceae species, from habitats of strongly contrasting soil P concentrations, in Australia, Brazil, and Chile. We found that only species from extremely P-impoverished habitats preferentially allocated P to photosynthetic mesophyll cells, suggesting it has evolved as an adaptation to their extremely P-impoverished habitat and that it is not a family-wide trait. Our results highlight the possible role of soil P in driving the evolution of ecologically relevant nutrient allocation patterns and that these patterns cannot be generalized across families. Furthermore, preferential allocation of P to photosynthetic cells may provide new and exciting strategies to improve PPUE in crop species.

Journal ArticleDOI
TL;DR: These findings not only greatly extend the list of acetylated and/or succinylated proteins but they also demonstrate the close cooperation between these PTMs in leaf proteins with key metabolic functions.
Abstract: Protein lysine acylations, such as succinylation and acetylation, are important post-translational modification (PTM) mechanisms, with key roles in cellular regulation. Antibody-based affinity enrichment, high-resolution liquid chromatography mass spectrometry analysis, and integrated bioinformatics analysis were used to characterize the lysine succinylome (Ksuc ) and acetylome (Kace ) of rice leaves. In total, 2,593 succinylated and 1,024 acetylated proteins were identified, of which 723 were simultaneously acetylated and succinylated. Proteins involved in photosynthetic carbon metabolism such as the large and small subunits of RuBisCO, ribosomal functions, and other key processes were subject to both PTMs. Preliminary insights into oxidant-induced changes to the rice acetylome and succinylome were gained from treatments with hydrogen peroxide. Exposure to oxidative stress did not regulate global changes in the rice acetylome or succinylome but rather led to modifications on a specific subset of the identified sites. De-succinylation of recombinant catalase (CATA) and glutathione S-transferase (OsGSTU6) altered the activities of these enzymes showing that this PTM may have a regulatory function. These findings not only greatly extend the list of acetylated and/or succinylated proteins but they also demonstrate the close cooperation between these PTMs in leaf proteins with key metabolic functions.

Journal ArticleDOI
TL;DR: A generalized additive mixed model approach based on 2,332 woody angiosperm species derived from the literature explored the relationship between the proportion and spatial distribution of ray and axial parenchyma and vessel size, while controlling for maximum plant height and a range of climatic factors.
Abstract: Parenchyma represents a critically important living tissue in the sapwood of the secondary xylem of woody angiosperms. Considering various interactions between parenchyma and water transporting vessels, we hypothesise a structure-function relationship between both cell types. Through a generalised additive mixed model approach based on 2,332 woody angiosperm species derived from the literature, we explored the relationship between the proportion and spatial distribution of ray and axial parenchyma and vessel size, while controlling for maximum plant height and a range of climatic factors. When factoring in maximum plant height, we found that with increasing mean annual temperatures mean vessel diameter showed a positive correlation with axial parenchyma proportion and arrangement, but not for ray parenchyma. Species with a high axial parenchyma tissue fraction tend to have wide vessels, with most of the parenchyma packed around vessels, while species with small diameter vessels show a reduced amount of axial parenchyma that is not directly connected to vessels. This finding provides evidence for independent functions of axial parenchyma and ray parenchyma in large vesselled species and further supports a strong role for axial parenchyma in long distance xylem water transport.

Journal ArticleDOI
TL;DR: Test results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress, and the LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus.
Abstract: Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35-40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low-LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress.