scispace - formally typeset
Search or ask a question

Showing papers in "Protein Science in 1997"


Journal ArticleDOI
TL;DR: Details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment.
Abstract: Subtilases are members of the clan (or superfamily) of subtilisin-like serine proteases. Over 200 subtilases are presently known, more than 170 of which with their complete amino acid sequence. In this update of our previous overview (Siezen RJ, de Vos WM, Leunissen JAM, Dijkstra BW, 1991, Protein Eng 4:719-731), details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment. Based on sequence homology, a subdivision into six families is proposed. Highly conserved residues of the catalytic domain are identified, as are large or unusual deletions and insertions. Predictions have been updated for Ca(2+)-binding sites, disulfide bonds, and substrate specificity, based on both sequence alignment and three-dimensional homology modeling.

930 citations


Journal ArticleDOI
TL;DR: Bayesian statistical analysis of the conformations of side chains in proteins from the Protein Data Bank shows a strong similarity with the experimental distributions, indicating that proteins attain their lowest energy rotamers with respect to local backbone‐side‐chain interactions.
Abstract: We present a Bayesian statistical analysis of the conformations of side chains in proteins from the Protein Data Bank. This is an extension of the backbone-dependent rotamer library, and includes rotamer populations and average chi angles for a full range of phi, psi values. The Bayesian analysis used here provides a rigorous statistical method for taking account of varying amounts of data. Bayesian statistics requires the assumption of a prior distribution for parameters over their range of possible values. This prior distribution can be derived from previous data or from pooling some of the present data. The prior distribution is combined with the data to form the posterior distribution, which is a compromise between the prior distribution and the data. For the chi 2, chi 3, and chi 4 rotamer prior distributions, we assume that the probability of each rotamer type is dependent only on the previous chi rotamer in the chain. For the backbone-dependence of the chi 1 rotamers, we derive prior distributions from the product of the phi-dependent and psi-dependent probabilities. Molecular mechanics calculations with the CHARMM22 potential show a strong similarity with the experimental distributions, indicating that proteins attain their lowest energy rotamers with respect to local backbone-side-chain interactions. The new library is suitable for use in homology modeling, protein folding simulations, and the refinement of X-ray and NMR structures.

814 citations


Journal ArticleDOI
TL;DR: A new multidimensional scoring approach for identifying and distinguishing trimeric and dimeric coiled coils is implemented in the MultiCoil program, which extends the two‐stranded coiled‐coil prediction program PairCoil to the identification of three‐stranding coiled Coil.
Abstract: A new multidimensional scoring approach for identifying and distinguishing trimeric and dimeric coiled coils is implemented in the MultiCoil program. The program extends the two-stranded coiled-coil prediction program PairCoil to the identification of three-stranded coiled coils. The computations are based upon data gathered from a three-stranded coiled-coil database comprising 6,319 amino acid residues, as well as from the previously constructed two-stranded coiled-coil database. In addition to identifying coiled coils not predicted by the two-stranded database programs, MultiCoil accurately classifies the oligomerization states of known dimeric and trimeric coiled coils. Analysis of the MultiCoil scores provides insight into structural features of coiled coils, and yields estimates that 0.9% of all protein residues form three-stranded coiled coils and that 1.5% form two-stranded coiled coils. The MultiCoil program is available at http:/(/)theory.lcs.mit.edu/multicoil.

749 citations


Journal ArticleDOI
TL;DR: Data sets of 362 structurally nonredundant protein‐protein interfaces and of 57 symmetry‐related oligomeric interfaces are used to explore whether the hydrophobic effect that guides protein folding is also the main driving force for protein‐ protein associations.
Abstract: Data sets of 362 structurally nonredundant protein-protein interfaces and of 57 symmetry-related oligomeric interfaces have been used to explore whether the hydrophobic effect that guides protein folding is also the main driving force for protein-protein associations. The buried nonpolar surface area has been used to measure the hydrophobic effect. Our analysis indicates that, although the hydrophobic effect plays a dominant role in protein-protein binding, it is not as strong as that observed in the interior of protein monomers. Comparison of interiors of the monomers with those of the interfaces reveals that, in general, the hydrophobic amino acids are more frequent in the interior of the monomers than in the interior of the protein-protein interfaces. On the other hand, a higher proportion of charged and polar residues are buried at the interfaces, suggesting that hydrogen bonds and ion pairs contribute more to the stability of protein binding than to that of protein folding. Moreover, comparison of the interior of the interfaces to protein surfaces indicates that the interfaces are poorer in polar/charged than the surfaces and are richer in hydrophobic residues. The interior of the interfaces appears to constitute a compromise between the stabilization contributed by the hydrophobic effect on the one hand and avoiding patches on the protein surfaces that are too hydrophobic on the other. Such patches would be unfavorable for the unassociated monomers in solution. We conclude that, although the types of interactions are similar between protein-protein interfaces and single-chain proteins overall, the contribution of the hydrophobic effect to protein-protein associations is not as strong as to protein folding. This implies that packing patterns and interatom, or interresidue, pairwise potential functions, derived from monomers, are not ideally suited to predicting and assessing ligand associations or design. These would perform adequately only in cases where the hydrophobic effect at the binding site is substantial.

383 citations


Journal ArticleDOI
TL;DR: By combining analysis of 54 C1 domain sequences with information from previously reported solution and crystal structure determinations and site‐directed mutagenesis, profiles are derived and used to classify C1 domains.
Abstract: C1 domains are compact alpha/beta structural units of about 50 amino acids which tightly bind two zinc ions. These domains were first discovered as the loci of phorbol ester and diacylglycerol binding to conventional protein kinase C isozymes, which contain 2 C1 domains (C1A and C1B) in their N-terminal regulatory regions. We present a comprehensive list of 54 C1 domains occurring singly or doubly in 34 different proteins. Many C1 domains and C1 domain-containing proteins bind phorbol esters, but many others do not. By combining analysis of 54 C1 domain sequences with information from previously reported solution and crystal structure determinations and site-directed mutagenesis, profiles are derived and used to classify C1 domains. Twenty-six C1 domains fit the profile for phorbol-ester binding and are termed "typical." Twenty-eight other domains fit the profile for the overall C1 domain fold but do not fit the profile for phorbol ester binding, and are termed "atypical." Proteins containing typical C1 domains are predicted to be regulated by diacylglycerol, whereas those containing only atypical domains are not.

365 citations


Journal ArticleDOI
TL;DR: A role for ATP binding, as well as hydrolysis, in the folding cycle V, and the role of the cis space in the folded reaction E. Folding governed by a “timer” mechanism
Abstract: I. Architecture of GroEL and GroES and the reaction pathway A. Architecture of the chaperonins B. Reaction pathway of GroEL-GroES-mediated folding II. Polypeptide binding A. A parallel network of chaperones binding polypeptides in vivo B. Polypeptide binding in vitro 1. Role of hydrophobicity in recognition 2. Homologous proteins with differing recognition-differences in primary structure versus effects on folding pathway 3. Conformations recognized by GroEL a. Refolding studies b. Binding of metastable intermediates c. Conformations while stably bound at GroEL 4. Binding constants and rates of association 5. Conformational changes in the substrate protein associated with binding by GroEL a. Observations b. Kinetic versus thermodynamic action of GroEL in mediating unfolding c. Crossing the energy landscape in the presence of GroEL III. ATP binding and hydrolysis-driving the reaction cycle IV. GroEL-GroES-polypeptide ternary complexes-the folding-active cis complex A. Cis and trans ternary complexes B. Symmetric complexes C. The folding-active intermediate of a chaperonin reaction-cis ternary complex D. The role of the cis space in the folding reaction E. Folding governed by a "timer" mechanism F. Release of nonnative polypeptides during the GroEL-GroES reaction G. Release of both native and nonnative forms under physiologic conditions H. A role for ATP binding, as well as hydrolysis, in the folding cycle V. Concluding remarks.

354 citations


Journal ArticleDOI
TL;DR: A tentative model for the IL‐6 hexameric receptor ligand complex is presented and discussed with respect to the mechanism of action of the other members of theIL‐6 family of cytokines.
Abstract: Interleukin-6 (IL-6) is a multifunctional cytokine that plays a central role in host defense due to its wide range of immune and hematopoietic activities and its potent ability to induce the acute phase response. Overexpression of IL-6 has been implicated in the pathology of a number of diseases including multiple myeloma, rheumatoid arthritis, Castleman's disease, psoriasis, and post-menopausal osteoporosis. Hence, selective antagonists of IL-6 action may offer therapeutic benefits. IL-6 is a member of the family of cytokines that includes interleukin-11, leukemia inhibitory factor, oncostatin M, cardiotrophin-1, and ciliary neurotrophic factor. Like the other members of this family, IL-6 induces growth or differentiation via a receptor-system that involves a specific receptor and the use of a shared signaling subunit, gp130. Identification of the regions of IL-6 that are involved in the interactions with the IL-6 receptor, and gp130 is an important first step in the rational manipulation of the effects of this cytokine for therapeutic benefit. In this review, we focus on the sites on IL-6 which interact with its low-affinity specific receptor, the IL-6 receptor, and the high-affinity converter gp130. A tentative model for the IL-6 hexameric receptor ligand complex is presented and discussed with respect to the mechanism of action of the other members of the IL-6 family of cytokines.

346 citations


Journal ArticleDOI
TL;DR: In this article, a review of the Higgs boson production at the LHC within the Standard Model and its minimal supersymmetric extension is presented, and the predictions for decay rates and production cross sections are updated by choosing the present value of the top quark mass and recent parton density sets.
Abstract: Higgs boson production at the LHC within the Standard Model and its minimal supersymmetric extension is reviewed. The predictions for decay rates and production cross sections are updated by choosing the present value of the top quark mass and recent parton density sets. Moreover, all relevant higher order corrections, some of which have been obtained only recently, are included in a consistent way.

318 citations


Journal ArticleDOI
TL;DR: This extended dataset suggests that SAM is an evolutionary conserved protein binding domain that is involved in the regulation of numerous developmental processes among diverse eukaryotes.
Abstract: More than 60 previously undetected SAM domain- containing proteins have been identified using profile searching methods. Among these are over 40 EPH-related receptor tyrosine kinases (RFTK), Drosophila bicaudal-C, a p53 from Loligoforbesi, and diacylglycerol-kinase isoform 6. This extended dataset sug- gests that SAM is an evolutionary conserved protein binding do- main that is involved in the regulation of numerous developmental processes among diverse eukaryotes. A conserved tyrosine in the SAM sequences of the EPH related RPTKs is likely to mediate cell-cell initiated signal transduction via the binding of SH2 con- taining proteins to phosphotyrosine.

301 citations


Journal ArticleDOI
TL;DR: This discussion, prepared for the Protein Society's symposium honoring the 100th anniversary of Kaj Linderstrøm‐Lang, shows how hydrogen exchange approaches initially conceived and implemented by Lang and his colleagues some 50 years ago are contributing to current progress in structural biology.
Abstract: This discussion, prepared for the Protein Society's symposium honoring the 100th anniversary of Kaj Linderstrom-Lang, shows how hydrogen exchange approaches initially conceived and implemented by Lang and his colleagues some 50 years ago are contributing to current progress in structural biology. Examples are chosen from the active protein folding field. Hydrogen exchange methods now make it possible to define the structure of protein folding intermediates in various contexts: as tenuous molten globule forms at equilibrium under destabilizing conditions, in kinetic intermediates that exist for less than one second, and as infinitesimally populated excited state forms under native conditions. More generally, similar methods now find broad application in studies of protein structure, energetics, and interactions. This article considers the rise of these capabilities from their inception at the Carlsberg Labs to their contemporary role as a significant tool of modern structural biology.

299 citations


Journal ArticleDOI
TL;DR: Analysis of the designed sequences suggests that helix propensity is the key factor in sequence design for surface helical positions.
Abstract: Using a protein design algorithm that quantitatively considers side-chain interactions, the design of surface residues of alpha helices was examined. Three scoring functions were tested: a hydrogen-bond potential, a hydrogen-bond potential in conjunction with a penalty for uncompensated burial of polar hydrogens, and a hydrogen-bond potential in combination with helix propensity. The solvent exposed residues of a homodimeric coiled coil based on GCN4-p1 were designed by using the Dead-End Elimination Theorem to find the optimal amino acid sequence for each scoring function. The corresponding peptides were synthesized and characterized by circular dichroism spectroscopy and size exclusion chromatography. The designed peptides were dimeric and nearly 100% helical at 1 degree C, with melting temperatures from 69-72 degrees C, over 12 degrees C higher than GCN4-p1, whereas a random hydrophilic sequence at the surface positions produced a peptide that melted at 15 degrees C. Analysis of the designed sequences suggests that helix propensity is the key factor in sequence design for surface helical positions.

Journal ArticleDOI
TL;DR: The membrane‐bound peptidases dedicated to the processing of protein precursors that are found in the plasma membrane of prokaryotes and the endoplasmic reticulum, the mitochondrial inner membrane, and the chloroplast thylakoidal membrane of eukaryotes are reviewed.
Abstract: The discovery that proteins exported from the cytoplasm are typically synthesized as larger precursors with cleavable signal peptides has focused interest on the peptidases that remove the signal peptides. Here, we review the membrane-bound peptidases dedicated to the processing of protein precursors that are found in the plasma membrane of prokaryotes and the endoplasmic reticulum, the mitochondrial inner membrane, and the chloroplast thylakoidal membrane of eukaryotes. These peptidases are termed type I signal (or leader) peptidases. They share the unusual feature of being resistant to the general inhibitors of the four well-characterized peptidase classes. The eukaryotic and prokaryotic signal peptidases appear to belong to a single peptidase family. This review emphasizes the evolutionary concepts, current knowledge of the catalytic mechanism, and substrate specificity requirements of the signal peptidases.

Journal ArticleDOI
TL;DR: The high‐resolution structure of MMOH OB3b indicates 26 consecutive amino acid sequence differences in the /3 chain when compared to the previously reported sequence inferred from the cloned gene, suggesting a common active site structure for the soluble MMOHs.
Abstract: Methane monooxygenase (MMO), found in aerobic methanotrophic bacteria, catalyzes the O2-dependent conversion of methane to methanol. The soluble form of the enzyme (sMMO) consists of three components: a reductase, a regulatory "B" component (MMOB), and a hydroxylase component (MMOH), which contains a hydroxo-bridged dinuclear iron cluster. Two genera of methanotrophs, termed Type X and Type II, which differ markedly in cellular and metabolic characteristics, are known to produce the sMMO. The structure of MMOH from the Type X methanotroph Methylococcus capsulatus Bath (MMO Bath) has been reported recently. Two different structures were found for the essential diiron cluster, depending upon the temperature at which the diffraction data were collected. In order to extend the structural studies to the Type II methanotrophs and to determine whether one of the two known MMOH structures is generally applicable to the MMOH family, we have determined the crystal structure of the MMOH from Type II Methylosinus trichosporium OB3b (MMO OB3b) in two crystal forms to 2.0 A resolution, respectively, both determined at 18 degrees C. The crystal forms differ in that MMOB was present during crystallization of the second form. Both crystal forms, however, yielded very similar results for the structure of the MMOH. Most of the major structural features of the MMOH Bath were also maintained with high fidelity. The two irons of the active site cluster of MMOH OB3b are bridged by two OH (or one OH and one H2O), as well as both carboxylate oxygens of Glu alpha 144. This bis-mu-hydroxo-bridged "diamond core" structure, with a short Fe-Fe distance of 2.99 A, is unique for the resting state of proteins containing analogous diiron clusters, and is very similar to the structure reported for the cluster from flash frozen (-160 degrees C) crystals of MMOH Bath, suggesting a common active site structure for the soluble MMOHs. The high-resolution structure of MMOH OB3b indicates 26 consecutive amino acid sequence differences in the beta chain when compared to the previously reported sequence inferred from the cloned gene. Fifteen additional sequence differences distributed randomly over the three chains were also observed, including D alpha 209E, a ligand of one of the irons.

Journal ArticleDOI
TL;DR: Techniques of sequence analysis indicate that PDZ domain homologues are present in yeast, plants, and bacteria, suggesting that the spread of PDZ domains in these diverse organisms may have occurred via horizontal gene transfer.
Abstract: Several dozen signaling proteins are now known to contain 80-100 residue repeats, called PDZ (or DHR or GLGF) domains, several of which interact with the C-terminal tetrapeptide motifs X-Ser/Thr-X-Val-COO- of ion channels and/or receptors. PDZ domains have previously been noted only in mammals, flies, and worms, suggesting that the primordial PDZ domain arose relatively late in eukaryotic evolution. Here, techniques of sequence analysis-including local alignment, profile, and motif database searches-indicate that PDZ domain homologues are present in yeast, plants, and bacteria. It is suggested that two PDZ domains occur in bacterial high-temperature requirement A (htrA) and one in tail-specific protease (tsp) homologues, and that a yeast htrA homologue contains four PDZ domains. Sequence comparisons suggest that the spread of PDZ domains in these diverse organisms may have occurred via horizontal gene transfer. The known affinity of Escherichia coli tsp for C-terminal polypeptides is proposed to be mediated by its PDZ-like domain, in a similar manner to the binding of C-terminal polypeptides by animal PDZ domains.

Journal ArticleDOI
TL;DR: Results indicate that the stabilization of the protein by sorbitol can be fully accounted for by weak thermodynamic interactions at the protein surface that involve water co‐solvent exchange at thermodynamically non‐neutral sites.
Abstract: The effect of interactions of sorbitol with ribonuclease A (RNase A) and the resulting stabilization of structure was examined in parallel thermal unfolding and preferential binding studies with the application of multicomponent thermodynamic theory. The protein was stabilized by sorbitol both at pH 2.0 and pH 5.5 as the transition temperature, Tm, was increased. The enthalpy of the thermal denaturation had a small dependence on sorbitol concentration, which was reflected in the values of the standard free energy change of denaturation, delta delta G(o) = delta G(o) (sorbitol) - delta G(o)(water). Measurements of preferential interactions at 48 degrees C at pH 5.5, where protein is native, and pH 2.0 where it is denatured, showed that sorbitol is preferentially excluded from the denatured protein up to 40%, but becomes preferentially bound to native protein above 20% sorbitol. The chemical potential change on transferring the denatured RNase A from water to sorbitol solution is larger than that for the native protein, delta mu(2D) > delta mu(2N), which is consistent with the effect of sorbitol on the free energy change of denaturation. The conformity of these results to the thermodynamic expression of the effect of a co-solvent on denaturation, delta G(o)(W) + delta mu(D)(2)delta G(o)(S) + delta mu(2D), indicates that the stabilization of the protein by sorbitol can be fully accounted for by weak thermodynamic interactions at the protein surface that involve water reversible co-solvent exchange at thermodynamically non-neutral sites. The protein structure stabilizing action of sorbitol is driven by stronger exclusion from the unfolded protein than from the native structure.

Journal ArticleDOI
TL;DR: A novel, conserved phosphatase sequence motif, KXXXXXXRP‐(X12‐54)‐PSGH‐ (X31‐54))‐SRXXXXX HXXXD, that is shared among several lipid phosphatases, the mammalian glucose‐6‐phosphatase, and a collection of bacterial nonspecific acid phosphat enzymes is identified.
Abstract: We have identified a novel, conserved phosphatase sequence motif, KXXXXXXRP-(X12-54)-PSGH-(X31-54)-SRXXXXX HXXXD, that is shared among several lipid phosphatases, the mammalian glucose-6-phosphatases, and a collection of bacterial nonspecific acid phosphatases. This sequence was also found in the vanadium-containing chloroperoxidase of Curvularia inaequalis. Several lines of evidence support this phosphatase motif identification. Crystal structure data on chloroperoxidase revealed that all three domains are in close proximity and several of the conserved residues are involved in the binding of the cofactor, vanadate, a compound structurally similar to phosphate. Structure-function analysis of the human glucose-6-phosphatase has shown that two of the conserved residues (the first domain arginine and the central domain histidine) are essential for enzyme activity. This conserved sequence motif was used to identify nine additional putative phosphatases from sequence databases, one of which has been determined to be a lipid phosphatase in yeast.

Journal ArticleDOI
TL;DR: In this paper, the effects of trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) on the conformation of bovine beta-lactoglobulin and the bee venom melittin at pH 2.
Abstract: Alcohols denature the native state of proteins, and also stabilize the alpha-helical conformation in unfolded proteins and peptides. Among various alcohols, trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) are often used because of their high potential to induce such effects. However, the reason why TFE and HFIP are more effective than other alcohols is unknown. Using CD, we studied the effects of TFE and HFIP as well as reference alcohols, i.e., methanol, ethanol, and isopropanol, on the conformation of bovine beta-lactoglobulin and the bee venom melittin at pH 2. Upon addition of alcohols, beta-lactoglobulin exhibited a transformation from the native state, consisting of beta-sheets, to the alpha-helical state, whereas melittin folded from the unfolded state to the alpha-helical state. In both cases, the order of effectiveness of alcohols was shown to be: HFIP > TFE > isopropanol > ethanol > methanol. The alcohol-induced transitions were analyzed assuming a two-state mechanism to obtain the m value, a measure of the dependence of the free energy change on alcohol concentration. Comparison of the m values indicates that the high potential of TFE can be explained by the additive contribution of constituent groups, i.e., F atoms and alkyl group. On the other hand, the high potential of HFIP is more than that expected from the additive effects, suggesting that the cooperative formation of micelle-like clusters of HFIP is important.

Journal ArticleDOI
TL;DR: This study expands the scope of domain interface engineering by demonstrating the enhanced assembly of proteins interacting via two domain interfaces through domain interface remodeling based upon either sterically complementary mutations or interchain disulfide bonds.
Abstract: An anti-p185HER2/anti-CD3 humanized bispecific diabody was previously constructed from two cross-over single-chain Fv in which YH and VL domains of the parent antibodies are present on different polypeptides. Here this diabody is used to evaluate domain interface engineering strategies for enhancing the formation of functional heterodimers over inactive homodimers. A disulfide-stabilized diabody was obtained by introducing two cysteine mutations, VL L46C and VH D101C, at the anti-p185HER2.VL/VH interface. The fraction of recovered diabody that was functional following expression in Escherichia coli was improved for the disulfide-stabilized compared to the parent diabody (> 96% versus 72%), whereas the overall yield was > 60-fold lower. Eleven "knob-into-hole" diabodies were designed by molecular modeling of sterically complementary mutations at the two VL/VH interfaces. Replacements at either interface are sufficient to improve the fraction of functional heterodimer, while maintaining overall recoverable yields and affinity for both antigens close to that of the parent diabody. For example, diabody variant v5 containing the mutations VL Y87A:F98M and VH V37F:L45W at the anti-p185HER2 VL/VH interface was recovered as 92% functional heterodimer while maintaining overall recovered yield within twofold of the parent diabody. The binding affinity of v5 for p185HER2 extracellular domain and T cells is eightfold weaker and twofold stronger than for the parent diabody, respectively. Domain interface remodeling based upon either sterically complementary mutations or interchain disulfide bonds can facilitate the production of a functional diabody heterodimer. This study expands the scope of domain interface engineering by demonstrating the enhanced assembly of proteins interacting via two domain interfaces.

Journal ArticleDOI
TL;DR: In this article, a 3(10) helical conformation of the flexible binding loop of the streptavidin-biotin complex has been determined in two monoclinic crystal forms and the binding loop generally adopts an open conformation in the unbound species.
Abstract: The streptavidin-biotin complex provides the basis for many important biotechnological applications and is an interesting model system for studying high-affinity protein-ligand interactions. We report here crystallographic studies elucidating the conformation of the flexible binding loop of streptavidin (residues 45 to 52) in the unbound and bound forms. The crystal structures of unbound streptavidin have been determined in two monoclinic crystal forms. The binding loop generally adopts an open conformation in the unbound species. In one subunit of one crystal form, the flexible loop adopts the closed conformation and an analysis of packing interactions suggests that protein-protein contacts stabilize the closed loop conformation. In the other crystal form all loops adopt an open conformation. Co-crystallization of streptavidin and biotin resulted in two additional, different crystal forms, with ligand bound in all four binding sites of the first crystal form and biotin bound in only two subunits in a second. The major change associated with binding of biotin is the closure of the surface loop incorporating residues 45 to 52. Residues 49 to 52 display a 3(10) helical conformation in unbound subunits of our structures as opposed to the disordered loops observed in other structure determinations of streptavidin. In addition, the open conformation is stabilized by a beta-sheet hydrogen bond between residues 45 and 52, which cannot occur in the closed conformation. The 3(10) helix is observed in nearly all unbound subunits of both the co-crystallized and ligand-free structures. An analysis of the temperature factors of the binding loop regions suggests that the mobility of the closed loops in the complexed structures is lower than in the open loops of the ligand-free structures. The two biotin bound subunits in the tetramer found in the MONO-b1 crystal form are those that contribute Trp 120 across their respective binding pockets, suggesting a structural link between these binding sites in the tetramer. However, there are no obvious signatures of binding site communication observed upon ligand binding, such as quaternary structure changes or shifts in the region of Trp 120. These studies demonstrate that while crystallographic packing interactions can stabilize both the open and closed forms of the flexible loop, in their absence the loop is open in the unbound state and closed in the presence of biotin. If present in solution, the helical structure in the open loop conformation could moderate the entropic penalty associated with biotin binding by contributing an order-to-disorder component to the loop closure.

Journal ArticleDOI
TL;DR: Repacking of Cores (ROC) as discussed by the authors is a core packing algorithm that can be used to predict core packing arrangements for the design of proteins, and has been shown to be useful in future studies to design variants with stabilities closer to the native protein.
Abstract: We have previously reported the development and evaluation of a computational program to assist in the design of hydrophobic cores of proteins. In an effort to investigate the role of core packing in protein structure, we have used this program, referred to as Repacking of Cores (ROC), to design several variants of the protein ubiquitin. Nine ubiquitin variants containing from three to eight hydrophobic core mutations were constructed, purified, and characterized in terms of their stability and their ability to adopt a uniquely folded native-like conformation. In general, designed ubiquitin variants are more stable than control variants in which the hydrophobic core was chosen randomly. However, in contrast to previous results with 434 cro, all designs are destabilized relative to the wild-type (WT) protein. This raises the possibility that beta-sheet structures have more stringent packing requirements than alpha-helical proteins. A more striking observation is that all variants, including random controls, adopt fairly well-defined conformations, regardless of their stability. This result supports conclusions from the cro studies that non-core residues contribute significantly to the conformational uniqueness of these proteins while core packing largely affects protein stability and has less impact on the nature or uniqueness of the fold. Concurrent with the above work, we used stability data on the nine ubiquitin variants to evaluate and improve the predictive ability of our core packing algorithm. Additional versions of the program were generated that differ in potential function parameters and sampling of side chain conformers. Reasonable correlations between experimental and predicted stabilities suggest the program will be useful in future studies to design variants with stabilities closer to that of the native protein. Taken together, the present study provides further clarification of the role of specific packing interactions in protein structure and stability, and demonstrates the benefit of using systematic computational methods to predict core packing arrangements for the design of proteins.

Journal ArticleDOI
TL;DR: This paper presents an algorithm for representing a protein's binding site in a way that is specifically suited to molecular docking applications, and tests the effectiveness of the probe representation on a number of ligand‐protein complexes.
Abstract: Molecular docking is a popular way to screen for novel drug compounds. The method involves aligning small molecules to a protein structure and estimating their binding affinity. To do this rapidly for tens of thousands of molecules requires an effective representation of the binding region of the target protein. This paper presents an algorithm for representing a protein's binding site in a way that is specifically suited to molecular docking applications. Initially the protein's surface is coated with a collection of molecular fragments that could potentially interact with the protein. Each fragment, or probe, serves as a potential alignment point for atoms in a ligand, and is scored to represent that probe's affinity for the protein. Probes are then clustered by accumulating their affinities, where high affinity clusters are identified as being the "stickiest" portions of the protein surface. The stickiest cluster is used as a computational binding "pocket" for docking. This method of site identification was tested on a number of ligand-protein complexes; in each case the pocket constructed by the algorithm coincided with the known ligand binding site. Successful docking experiments demonstrated the effectiveness of the probe representation.

Journal ArticleDOI
TL;DR: Two new reference states are introduced in which no specific pair interactions between amino acids are allowed, but in which the connectivity of the protein chain is retained and the quasichemical approximation to each of these reference states is shown to be excellent.
Abstract: Many existing derivations of knowledge-based statistical pair potentials invoke the quasichemical approximation to estimate the expected side-chain contact frequency if there were no amino acid pair-specific interactions. At first glance, the quasichemical approximation that treats the residues in a protein as being disconnected and expresses the side-chain contact probability as being proportional to the product of the mole fractions of the pair of residues would appear to be rather severe. To investigate the validity of this approximation, we introduce two new reference states in which no specific pair interactions between amino acids are allowed, but in which the connectivity of the protein chain is retained. The first estimates the expected number of side-chain contacts by treating the protein as a Gaussian random coil polymer. The second, more realistic reference state includes the effects of chain connectivity, secondary structure, and chain compactness by estimating the expected side-chain contact probability by placing the sequence of interest in each member of a library of structures of comparable compactness to the native conformation. The side-chain contact maps are not allowed to readjust to the sequence of interest, i.e., the side chains cannot repack. This situation would hold rigorously if all amino acids were the same size. Both reference states effectively permit the factorization of the side-chain contact probability into sequence-dependent and structure-dependent terms. Then, because the sequence distribution of amino acids in proteins is random, the quasichemical approximation to each of these reference states is shown to be excellent. Thus, the range of validity of the quasichemical approximation is determined by the magnitude of the side-chain repacking term, which is, at present, unknown. Finally, the performance of these two sets of pair interaction potentials as well as side-chain contact fraction-based interaction scales is assessed by inverse folding tests both without and with allowing for gaps.

Journal ArticleDOI
TL;DR: For all protein‐peptide complexes that were treated, it was found that electrostatic interactions oppose binding whereas nonpolar interactions drive complex formation.
Abstract: This paper describes a methodology to calculate the binding free energy (delta G) of a protein-ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non-electrostatic contributions. In this cycle, the reactants are discharged in water, associated as purely nonpolar entities, and the final complex is then recharged. The total electrostatic free energies of the protein, the ligand, and the complex in water are calculated with the finite difference Poisson-Boltzmann (FDPB) method. The nonpolar (hydrophobic) binding free energy is calculated using a free energy-surface area relationship, with a single alkane/water surface tension coefficient (gamma aw). The loss in backbone and side-chain configurational entropy upon binding is estimated and added to the electrostatic and the nonpolar components of delta G. The methodology is applied to the binding of the murine MHC class I protein H-2Kb with three distinct peptides, and to the human MHC class I protein HLA-A2 in complex with five different peptides. Despite significant differences in the amino acid sequences of the different peptides, the experimental binding free energy differences (delta delta Gexp) are quite small (< 0.3 and < 2.7 kcal/mol for the H-2Kb and HLA-A2 complexes, respectively). For each protein, the calculations are successful in reproducing a fairly small range of values for delta delta Gcalc (< 4.4 and < 5.2 kcal/mol, respectively) although the relative peptide binding affinities of H-2Kb and HLA-A2 are not reproduced. For all protein-peptide complexes that were treated, it was found that electrostatic interactions oppose binding whereas nonpolar interactions drive complex formation. The two types of interactions appear to be correlated in that larger nonpolar contributions to binding are generally opposed by increased electrostatic contributions favoring dissociation. The factors that drive the binding of peptides to MHC proteins are discussed in light of our results.

Journal ArticleDOI
Luis Alvarez-Gaume1, S. F. Hassan1
TL;DR: In this paper, the authors give a pedagogical introduction to the work of Seiberg and Witten on S-duality and the exact results of N = 2 supersymmetric guage theories with and without matter.
Abstract: In these notes we attempt to give a pedagogical introduction to the work of Seiberg and Witten on S-duality and the exact results of N = 2 supersymmetric guage theories with and without matter. The first half is devoted to a review of monopoles in guage theories and the construction of supersymmetric guage theories. In the second half, we describe the work of Seiberg and Witten.

Journal ArticleDOI
TL;DR: The serine in the core hinge region of IgG4 allows more hinge region flexibility than the proline of IgGl and thus may permit formation of a stable intrachain disulfide bond more readily, and modeling results suggest a reason why a larger fraction of intrACHain bonds are observed in IgG 4 rather than IgGl molecules.
Abstract: IgG is a tetrameric protein composed of two copies each of the light and heavy chains. The four-chain structure is maintained by strong noncovalent interactions between the amino-terminal half of pairs of heavy-light chains and between the carboxyl-terminal regions of the two heavy chains. In addition, interchain disulfide bonds link each heavy-light chain and also link the paired heavy chains. An engineered human IgG4 specific for human tumor necrosis factor-alpha (CDP571) is similar to human myeloma IgG4 in that it is secreted as both disulfide bonded tetramers (approximately 75% of the total amount of IgG) and as tetramers composed of nondisulfide bonded half-IgG4 (heavy chain disulfide bonded to light chain) molecules. However, when CDP571 was genetically engineered with a proline at residue 229 of the core hinge region rather than serine, CDP571 (S229P), or with an IgG1 rather than IgG4 hinge region, CDP571(gamma 1), only trace amounts of nondisulfide bonded half-IgG tetramers were observed. Trypsin digest reversephase HPLC peptide mapping studies of CDP571 and CDP571(gamma 1) with on-line electrospray ionization mass spectroscopy supplemented with Edman sequencing identified the chemical factor preventing inter-heavy chain disulfide bond formation between half-IgG molecules: the two cysteines in the IgG4 and IgG1 core hinge region (CPSCP and CPPCP, respectively) are capable of forming an intrachain disulfide bond. Conformational modeling studies on cyclic disulfide bonded CPSCP and CPPCP peptides yielded energy ranges for the low-energy conformations of 31-33 kcal/mol and 40-42 kcal/mol, respectively. In addition, higher torsion and angle bending energies were observed for the CPPCP peptide due to backbone constraints caused by the extra proline. These modeling results suggest a reason why a larger fraction of intrachain bonds are observed in IgG4 rather than IgG1 molecules: the serine in the core hinge region of IgG4 allows more hinge region flexibility than the proline of IgG1 and thus may permit formation of a stable intrachain disulfide bond more readily.

Journal ArticleDOI
TL;DR: The new and older, established members of the cystatin “superfamily” are arranged into a possible evolutionary order, based on sequence homology and functional similarities.
Abstract: The cystatin "superfamily" encompasses proteins that contain multiple cystatin-like sequences. Some of the members are active cysteine protease inhibitors, while others have lost or perhaps never acquired this inhibitory activity. In recent years, several new members of the superfamily have characterized, including proteins from insects and plants. Based on partial amino acid homology, new members, such as the invariant chain (Ii), and the transforming growth factor-beta receptor type II (TGF-beta receptor II) may, in fact, represent members of an emerging family within the superfamily that may have used some common building blocks to form functionally diverse proteins. Cystatin super-family members have been found throughout evolution and members of each family of the superfamily are present in mammals today. In this review, the new and older, established members of the family are arranged into a possible evolutionary order, based on sequence homology and functional similarities.

Journal ArticleDOI
TL;DR: Kinetic analysis of activated peptide substrates shows that substrates placing hydrophobic residues in the specificity pocket are cleaved at a broader pH range than hydrophilic substrates and could be important for in vivo regulation of cruzain activity.
Abstract: The structure of cruzain, an essential protease from the parasite Trypanosoma cruzi, was determined by X-ray crystallography bound to two different covalent inhibitors. The cruzain S2 specificity pocket is able to productively bind both arginine and phenylalanine residues. The structures of cruzain bound to benzoyl-Arg-Ala-fluoromethyl ketone and benzoyl-Tyr-Ala-fluoromethyl ketone at 2.2 and 2.1 A, respectively, show a pH-dependent specificity switch. Glu 205 adjusts to restructure the S2 specificity pocket, conferring right binding to both hydrophobic and basic residues. Kinetic analysis of activated peptide substrates shows that substrates placing hydrophobic residues in the specificity pocket are cleaved at a broader pH range than hydrophilic substrates. These results demonstrate how cruzain binds both basic and hydrophobic residues and could be important for in vivo regulation of cruzain activity.


Journal ArticleDOI
TL;DR: A refined structure has been determined based on additional constraints for side‐chain and backbone dihedral angles derived from a large number of three‐bond J‐couplings and ROE data.
Abstract: The tendency of HIV-I Nef to form aggregates in solution, particularly at pH values below 8, together with its large fraction of highly mobile residues seriously complicated determination of its three-dimensional structure, both for heteronuclear solution NMR (Grzesiek et al., 1996a, Nut Struct Biol 3:340-345) and for X-ray crystallography (Lee et a]., 1996, Cell 85931-942). Methods used to determine the Nef structure by NMR at pH 8 and 0.6 mM concentration are presented, together with a detailed description of Nef's secondary and tertiary structure. The described techniques have general applicability for the NMR structure determination of proteins that are aggregating and/or have limited stability at low pH values. Extensive chemical shift assignments are reported for backbone and side chain 'H, I3C, and 15N resonances of the HN-1 Nef deletion mutants NEFA2-39, NEFA2-393A'59-'73, with the SH3 domain of the Hck tyrosine protein kinase. Besides a type I1 polyproline helix, Nef's structure consists of three a-helices, a 310 helix, and a five-stranded anti-parallel &sheet. The analysis of I5N relaxation parameters of the backbone amide sites reveals that all the secondary structure elements are non-mobile on the picosecond to nanosecond and on the millisecond time scale. A large number of slowly exchanging amide protons provides evidence for the stability of the Nef core even on the time scale of hours. Significant internal motions on the ps to ns time scale are detected for residues 60 to 71 and for residues 149 to 180, which form solvent-exposed loops. The residues of the HIV-1 protease cleavage site (W57/L58) do not exhibit large amplitude motions on the sub-nanosecond time scale, and their side chains insert themselves into a hydrophobic crevice formed between the C-terminus of helix 1 and the N-terminus of helix 2. A refined structure has been determined based on additional constraints for side-chain and backbone dihedral angles derived from a large number of three-bond J-couplings and ROE data.

Journal ArticleDOI
TL;DR: Based on the structural properties obtained by solution X‐ray scattering, general and conceptual structural images for the molten globules of various proteins are described and compared with the individual, detailed structural model obtained by nuclear magnetic resonance.
Abstract: A compact denatured state is often observed under a mild denaturation condition for various proteins. A typical example is the alpha-lactalbumin molten globule. Although the molecular compactness and shape are the essential properties for defining the molten globule, there have been ambiguities of these properties for the molten globule of alpha-lactalbumin. Using solution X-ray scattering, we have examined the structural properties of two types of molten globule of alpha-lactalbumin, the apo-protein at neutral pH and the acid molten globule. The radius of gyration for the native holo-protein was 15.7 A, but the two different molten globules both had a radius of gyration of 17.2 A. The maximum dimension of the molecule was also increased from 50 A for the native state to 60 A for the molten globule. These values clearly indicate that the molten globule is not as compact as the native state. The increment in the radius of gyration was less than 10% for the alpha-lactalbumin molten globule, compared with up to 30% for the molten globules of other globular proteins. Intramolecular disulfide bonds restrict the molecular expansion of the molten globule. The distance distribution function of the alpha-lactalbumin molten globule is composed of a single peak suggesting a globular shape, which is simply swollen from the native state. The scattering profile in the high Q region of the molten globule indicates the presence of a significant amount of tertiary fold. Based on the structural properties obtained by solution X-ray scattering, general and conceptual structural images for the molten globules of various proteins are described and compared with the individual, detailed structural model obtained by nuclear magnetic resonance.