scispace - formally typeset
Search or ask a question

Showing papers in "Tissue Engineering Part A in 2016"


Journal ArticleDOI
TL;DR: 3D-printed porous poly-ɛ-caprolactone scaffolds using a fused deposition modeling (FDM) process and functionalized them with mineral additives that have been widely used commercially and clinically: tricalcium phosphate (TCP), hydroxyapatite (HA), Bio-Oss (BO), or decellularized bone matrix (DCB) are functionalized.
Abstract: Three-dimensional (3D)-printing facilitates rapid, custom manufacturing of bone scaffolds with a wide range of material choices. Recent studies have demonstrated the potential for 3D-printing bioactive (i.e., osteo-inductive) scaffolds for use in bone regeneration applications. In this study, we 3D-printed porous poly-ɛ-caprolactone (PCL) scaffolds using a fused deposition modeling (FDM) process and functionalized them with mineral additives that have been widely used commercially and clinically: tricalcium phosphate (TCP), hydroxyapatite (HA), Bio-Oss (BO), or decellularized bone matrix (DCB). We assessed the “print quality” of the composite scaffolds and found that the print quality of PCL-TCP, PCL-BO, and PCL-DCB measured ∼0.7 and was statistically lower than PCL and PCL-HA scaffolds (∼0.8). We found that the incorporation of mineral particles did not significantly decrease the compressive modulus of the graft, which was on the order of 260 MPa for solid blocks and ranged from 32 to 83 MPa for porous s...

158 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the neuroregenerative properties of extracellular matrix (ECM)-derived hydrogels in vivo in the acute model of spinal cord injury (SCI) and found that both hydrogel types bridged the lesion cavity, modulated the innate immune response and provided the benefit of a stimulatory substrate for in vivo neural tissue regeneration.
Abstract: Restoration of lost neuronal function after spinal cord injury (SCI) still remains a big challenge for current medicine. One important repair strategy is bridging the SCI lesion with a supportive and stimulatory milieu that would enable axonal rewiring. Injectable extracellular matrix (ECM)-derived hydrogels have been recently reported to have neurotrophic potential in vitro. In this study, we evaluated the presumed neuroregenerative properties of ECM hydrogels in vivo in the acute model of SCI. ECM hydrogels were prepared by decellularization of porcine spinal cord (SC) or porcine urinary bladder (UB), and injected into a spinal cord hemisection cavity. Histological analysis and real-time qPCR were performed at 2, 4, and 8 weeks postinjection. Both types of hydrogels integrated into the lesion and stimulated neovascularization and axonal ingrowth into the lesion. On the other hand, massive infiltration of macrophages into the lesion and rapid hydrogel degradation did not prevent cyst formation, which progressively developed over 8 weeks. No significant differences were found between SC-ECM and UB-ECM. Gene expression analysis revealed significant downregulation of genes related to immune response and inflammation in both hydrogel types at 2 weeks post SCI. A combination of human mesenchymal stem cells with SC-ECM did not further promote ingrowth of axons and blood vessels into the lesion, when compared with the SC-ECM hydrogel alone. In conclusion, both ECM hydrogels bridged the lesion cavity, modulated the innate immune response, and provided the benefit of a stimulatory substrate for in vivo neural tissue regeneration. However, fast hydrogel degradation might be a limiting factor for the use of native ECM hydrogels in the treatment of acute SCI.

117 citations


Journal ArticleDOI
TL;DR: This work combined stereolithography and electrospinning techniques to fabricate a novel 3D biomimetic neural scaffold with a tunable porous structure and embedded aligned fibers to enhance biocompatibilities and mechanical properties of the scaffold.
Abstract: Three-dimensional (3D) bioprinting is a rapidly emerging technique in the field of tissue engineering to fabricate extremely intricate and complex biomimetic scaffolds in the range of micrometers. Such customized 3D printed constructs can be used for the regeneration of complex tissues such as cartilage, vessels, and nerves. However, the 3D printing techniques often offer limited control over the resolution and compromised mechanical properties due to short selection of printable inks. To address these limitations, we combined stereolithography and electrospinning techniques to fabricate a novel 3D biomimetic neural scaffold with a tunable porous structure and embedded aligned fibers. By employing two different types of biofabrication methods, we successfully utilized both synthetic and natural materials with varying chemical composition as bioink to enhance biocompatibilities and mechanical properties of the scaffold. The resulting microfibers composed of polycaprolactone (PCL) polymer and PCL mixed with gelatin were embedded in 3D printed hydrogel scaffold. Our results showed that 3D printed scaffolds with electrospun fibers significantly improve neural stem cell adhesion when compared to those without the fibers. Furthermore, 3D scaffolds embedded with aligned fibers showed an enhancement in cell proliferation relative to bare control scaffolds. More importantly, confocal microscopy images illustrated that the scaffold with PCL/gelatin fibers greatly increased the average neurite length and directed neurite extension of primary cortical neurons along the fiber. The results of this study demonstrate the potential to create unique 3D neural tissue constructs by combining 3D bioprinting and electrospinning techniques.

115 citations


Journal ArticleDOI
TL;DR: It is suggested that PDLSC-CM enhanced periodontal regeneration by suppressing the inflammatory response through TNF-α production, and transplantation of PDL SC-CM could be a novel approach forperiodontal regenerative therapy.
Abstract: Periodontal disease is one of the most common infectious diseases in adults and is characterized by the destruction of tooth-supporting tissues. Mesenchymal stem cells (MSCs) comprise the mesoderm-...

114 citations


Journal ArticleDOI
TL;DR: In this article, a 3D human induced pluripotent stem cells (iPSC)-derived cardiomyocyte (CMs) were seeded into 3D extracellular matrix (ECM) scaffolds and showed increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin and CASQ2.
Abstract: Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation, as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold, compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin, and CASQ2. Consistent with this, we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine, likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together, these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease.

105 citations


Journal ArticleDOI
TL;DR: Porcine iPSC-Heps is produced, which strongly expressed the hepatic markers α-fetoprotein and albumin and exhibited hepatic functionalities, including glycogen storage, lipid accumulation, low-density lipoprotein uptake, and indocyanine green metabolism, which provides a foundation for development of bioengineered liver using stem cell and decellularized scaffolds.
Abstract: Liver transplantation is the last resort for liver failure patients. However, due to the shortage of donor organs, bioengineered liver generated from decellularized whole liver scaffolds and induced pluripotent stem cell (iPSC)-derived hepatocytes (iPSC-Heps) is being studied as an alternative approach to treat liver disease. Nevertheless, there has been no report on both the interaction of iPSC-Heps with a liver extracellular matrix (ECM) and the analysis of recellularized iPSC-Heps into the whole liver scaffolds. In this study, we produced porcine iPSC-Heps, which strongly expressed the hepatic markers α-fetoprotein and albumin and exhibited hepatic functionalities, including glycogen storage, lipid accumulation, low-density lipoprotein uptake, and indocyanine green metabolism. Supplementation of ECM from porcine decellularized liver containing liver-derived growth factors stimulated the albumin expression of porcine iPSC-Heps during differentiation procedures. The iPSC-Heps were reseeded into decellularized liver scaffolds, and the recellularized liver was cultured using a continuous perfusion system. The recellularized liver scaffolds were transplanted into rats for a short term, and the grafts expressed hepatocyte markers and did not rupture. These results provide a foundation for development of bioengineered liver using stem cell and decellularized scaffolds.

90 citations


Journal ArticleDOI
TL;DR: Results suggest that the developed gene-activated alginate hydrogels were able to support transfection of encapsulated MSCs and directed their phenotype toward either a chondrogenic or an osteogenic phenotype depending on whether TGF-β3 and BMP2 were delivered in combination or isolation.
Abstract: Incorporating therapeutic genes into three-dimensional biomaterials is a promising strategy for enhancing tissue regeneration. Alginate hydrogels have been extensively investigated for cartilage and bone tissue engineering, including as carriers of transfected cells to sites of injury, making them an ideal gene delivery platform for cartilage and osteochondral tissue engineering. The objective of this study was to develop gene-activated alginate hydrogels capable of supporting nanohydroxyapatite (nHA)-mediated nonviral gene transfer to control the phenotype of mesenchymal stem cells (MSCs) for either cartilage or endochondral bone tissue engineering. To produce these gene-activated constructs, MSCs and nHA complexed with plasmid DNA (pDNA) encoding for transforming growth factor-beta 3 (pTGF-β3), bone morphogenetic protein 2 (pBMP2), or a combination of both (pTGF-β3-pBMP2) were encapsulated into alginate hydrogels. Initial analysis using reporter genes showed effective gene delivery and sustained overexpression of the transgenes were achieved. Confocal microscopy demonstrated that complexing the plasmid with nHA before hydrogel encapsulation led to transport of the plasmid into the nucleus of MSCs, which did not happen with naked pDNA. Gene delivery of TGF-β3 and BMP2 and subsequent cell-mediated expression of these therapeutic genes resulted in a significant increase in sulfated glycosaminoglycan and collagen production, particularly in the pTGF-β3-pBMP2 codelivery group in comparison to the delivery of either pTGF-β3 or pBMP2 in isolation. In addition, stronger staining for collagen type II deposition was observed in the pTGF-β3-pBMP2 codelivery group. In contrast, greater levels of calcium deposition were observed in the pTGF-β3- and pBMP2-only groups compared to codelivery, with a strong staining for collagen type X deposition, suggesting these constructs were supporting MSC hypertrophy and progression along an endochondral pathway. Together, these results suggest that the developed gene-activated alginate hydrogels were able to support transfection of encapsulated MSCs and directed their phenotype toward either a chondrogenic or an osteogenic phenotype depending on whether TGF-β3 and BMP2 were delivered in combination or isolation.

90 citations


Journal ArticleDOI
TL;DR: In this paper, the potential of hypertrophic chondrocytes to secrete angiogenic signals that support vasculogenesis and enhance bone repair has been explored by mimicking an endochondral ossification approach.
Abstract: The lack of success associated with the use of bone grafts has motivated the development of tissue engineering approaches for bone defect repair. However, the traditional tissue engineering approach of direct osteogenesis, mimicking the process of intramembranous ossification (IMO), leads to poor vascularization. In this study, we speculate that mimicking an endochondral ossification (ECO) approach may offer a solution by harnessing the potential of hypertrophic chondrocytes to secrete angiogenic signals that support vasculogenesis and enhance bone repair. We hypothesized that stimulation of mesenchymal stem cell (MSC) chondrogenesis and subsequent hypertrophy within collagen-based scaffolds would lead to improved vascularization and bone formation when implanted within a critical-sized bone defect in vivo. To produce ECO-based constructs, two distinct scaffolds, collagen-hyaluronic acid (CHyA) and collagen-hydroxyapatite (CHA), with proven potential for cartilage and bone repair, respectively, were cultured with MSCs initially in the presence of chondrogenic factors and subsequently supplemented with hypertrophic factors. To produce IMO-based constructs, CHA scaffolds were cultured with MSCs in the presence of osteogenic factors. These constructs were subsequently implanted into 7 mm calvarial defects on Fischer male rats for up to 8 weeks in vivo. The results demonstrated that IMO- and ECO-based constructs were capable of supporting enhanced bone repair compared to empty defects. However, it was clear that the scaffolds, which were previously shown to support the greatest cartilage formation in vitro (CHyA), led to the highest new bone formation (p < 0.05) within critical-sized bone defects 8 weeks postimplantation. We speculate this to be associated with the secretion of angiogenic signals as demonstrated by the higher VEGF protein production in the ECO-based constructs before implantation leading to the greater blood vessel ingrowth. This study thus demonstrates the ability of recapitulating a developmental process of bone formation to develop tissue-engineered constructs that manifest appreciable promise for bone defect repair.

70 citations


Journal ArticleDOI
TL;DR: A flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds is presented, where it is quantitatively described the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells.
Abstract: The immune system mediates tissue growth and homeostasis and is the first responder to injury or biomaterial implantation. Recently, it has been appreciated that immune cells play a critical role in wound healing and tissue repair and should thus be considered potentially beneficial, particularly in the context of scaffolds for regenerative medicine. In this study, we present a flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds, where we quantitatively describe the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells. We define a specific scaffold-associated macrophage (SAM) that expresses CD11b+F4/80+CD11c+/-CD206hiCD86+MHCII+ that are characteristic of an M2-like cell (CD206hi) with high antigen presentation capabilities (MHCII+). Adaptive immune cells tightly regulate the phenotype of a mature SAM. These studies provide a foundation for detailed characterization of the scaffold immune microenvironment of a given biomaterial scaffold to determine the effect of scaffold changes on immune response and subsequent therapeutic outcome of that material.

67 citations


Journal ArticleDOI
TL;DR: Evidence demonstrates that long ANAs are repopulated with increased p16(+) Schwann cells and stromal cells compared to short ANAs, suggesting a role for these cells in poor axonal regeneration across nerve constructs.
Abstract: Acellular nerve allografts (ANAs) and other nerve constructs do not reliably facilitate axonal regeneration across long defects (>3 cm). Causes for this deficiency are poorly understood. In this study, we determined what cells are present within ANAs before axonal growth arrest in nerve constructs and if these cells express markers of cellular stress and senescence. Using the Thy1-GFP rat and serial imaging, we identified the time and location of axonal growth arrest in long (6 cm) ANAs. Axonal growth halted within long ANAs by 4 weeks, while axons successfully regenerated across short (3 cm) ANAs. Cellular populations and markers of senescence were determined using immunohistochemistry, histology, and senescence-associated β-galactosidase staining. Both short and long ANAs were robustly repopulated with Schwann cells (SCs) and stromal cells by 2 weeks. Schwann cells (S100β(+)) represented the majority of cells repopulating both ANAs. Overall, both ANAs demonstrated similar cellular populations with the exception of increased stromal cells (fibronectin(+)/S100β(-)/CD68(-) cells) in long ANAs. Characterization of ANAs for markers of cellular senescence revealed that long ANAs accumulated much greater levels of senescence markers and a greater percentage of Schwann cells expressing the senescence marker p16 compared to short ANAs. To establish the impact of the long ANA environment on axonal regeneration, short ANAs (2 cm) that would normally support axonal regeneration were generated from long ANAs near the time of axonal growth arrest ("stressed" ANAs). These stressed ANAs contained mainly S100β(+)/p16(+) cells and markedly reduced axonal regeneration. In additional experiments, removal of the distal portion (4 cm) of long ANAs near the time of axonal growth arrest and replacement with long isografts (4 cm) rescued axonal regeneration across the defect. Neuronal culture derived from nerve following axonal growth arrest in long ANAs revealed no deficits in axonal extension. Overall, this evidence demonstrates that long ANAs are repopulated with increased p16(+) Schwann cells and stromal cells compared to short ANAs, suggesting a role for these cells in poor axonal regeneration across nerve constructs.

64 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented methods to recreate the human kidney ECM (kECM) microenvironment by fabricating kECM hydrogels derived from decellularized human kidney cortex.
Abstract: The kidney peritubular microvasculature is highly susceptible to injury from drugs and toxins, often resulting in acute kidney injury and progressive chronic kidney disease. Little is known about the process of injury and regeneration of human kidney microvasculature, resulting from the lack of appropriate kidney microvascular models that can incorporate the proper cells, extracellular matrices (ECMs), and architectures needed to understand the response and contribution of individual vascular components in these processes. In this study, we present methods to recreate the human kidney ECM (kECM) microenvironment by fabricating kECM hydrogels derived from decellularized human kidney cortex. The majority of native matrix proteins, such as collagen-IV, laminin, and heparan sulfate proteoglycan, and their isoforms were preserved in similar proportions as found in normal kidneys. Human kidney peritubular microvascular endothelial cells (HKMECs) became more quiescent when cultured on this kECM gel compared with culture on collagen-I-assessed using phenotypic, genotypic, and functional assays; whereas human umbilical vein endothelial cells became stimulated on kECM gels. We demonstrate for the first time that human kidney cortex can form a hydrogel suitable for use in flow-directed microphysiological systems. Our findings strongly suggest that selecting the proper ECM is a critical consideration in the development of vascularized organs on a chip and carries important implications for tissue engineering of all vascularized organs.

Journal ArticleDOI
TL;DR: In this article, the authors investigated how the biochemical and mechanical cues of hydrogels modulate cartilage formation by mixed cell populations in vivo using a mouse subcutaneous model.
Abstract: Cell-based therapies offer great promise for repairing cartilage. Previous strategies often involved using a single cell population such as stem cells or chondrocytes. A mixed cell population may offer an alternative strategy for cartilage regeneration while overcoming donor scarcity. We have recently reported that adipose-derived stem cells (ADSCs) can catalyze neocartilage formation by neonatal chondrocytes (NChons) when mixed co-cultured in 3D hydrogels in vitro. However, it remains unknown how the biochemical and mechanical cues of hydrogels modulate cartilage formation by mixed cell populations in vivo. The present study seeks to answer this question by co-encapsulating ADSCs and NChons in 3D hydrogels with tunable stiffness (∼1–33 kPa) and biochemical cues, and evaluating cartilage formation in vivo using a mouse subcutaneous model. Three extracellular matrix molecules were examined, including chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Our results showed that the type ...

Journal ArticleDOI
TL;DR: ECM bioscaffolds modify the default response to skeletal muscle injury, and provide a microenvironment conducive to a constructive healing response, and are characterized by immunolabeling methods.
Abstract: Acellular bioscaffolds composed of extracellular matrix (ECM) have been effectively used to promote functional tissue remodeling in both preclinical and clinical studies of volumetric muscle loss, but the mechanisms that contribute to such outcomes are not fully understood Thirty-two C57bl/6 mice were divided into eight groups of four animals each A critical-sized defect was created in the quadriceps muscle and was repaired with a small intestinal submucosa ECM bioscaffold or left untreated Animals were sacrificed at 3, 7, 14, or 56 days after surgery The spatiotemporal cellular response in both treated and untreated groups was characterized by immunolabeling methods Early time points showed a robust M2-like macrophage phenotype following ECM treatment in contrast to the predominant M1-like macrophage phenotype present in the untreated group ECM implantation promoted perivascular stem cell mobilization, increased presence of neurogenic progenitor cells, and was associated with myotube formation These cell types were present not only at the periphery of the defect near uninjured muscle, but also in the center of the ECM-filled defect ECM bioscaffolds modify the default response to skeletal muscle injury, and provide a microenvironment conducive to a constructive healing response

Journal ArticleDOI
TL;DR: The combined effect of substrates and topography influences stem cell differentiation through influence by both topography and mechanical properties of the matrix are studied.
Abstract: Stem cell differentiation is guided by contact with the physical microenvironment, influence by both topography and mechanical properties of the matrix. In this study, the combined effect of substr...

Journal ArticleDOI
TL;DR: In this paper, the authors combined electrospun cell transplantation scaffolds with thermal inkjet 3D cell printing techniques capable of precise positioning of retinal ganglion cells on the scaffold surface.
Abstract: Retinal ganglion cells (RGCs) are responsible for the transfer of signals from the retina to the brain. As part of the central nervous system, RGCs are unable to regenerate following injury, and implanted cells have limited capacity to orient and integrate in vivo. During development, secreted guidance molecules along with signals from extracellular matrix and the vasculature guide cell positioning, for example, around the fovea, and axon outgrowth; however, these changes are temporally regulated and are not the same in the adult. Here, we combine electrospun cell transplantation scaffolds capable of RGC neurite guidance with thermal inkjet 3D cell printing techniques capable of precise positioning of RGCs on the scaffold surface. Optimal printing parameters are developed for viability, electrophysiological function and, neurite pathfinding. Different media, commonly used to promote RGC survival and growth, were tested under varying conditions. When printed in growth media containing both brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), RGCs maintained survival and normal electrophysiological function, and displayed radial axon outgrowth when printed onto electrospun scaffolds. These results demonstrate that 3D printing technology may be combined with complex electrospun surfaces in the design of future retinal models or therapies.

Journal ArticleDOI
TL;DR: It is demonstrated that application of ASC-seeded hydrogels to wounds, when compared with injected ASCs or a noncell control, increased the recruitment of provascular circulating bone marrow-derived mesenchymal progenitor cells (BM-MPCs).
Abstract: Adipose-derived mesenchymal stem cells (ASCs) are appealing for cell-based wound therapies because of their accessibility and ease of harvest, but their utility is limited by poor cell survival within the harsh wound microenvironment. In prior work, our laboratory has demonstrated that seeding ASCs within a soft pullulan-collagen hydrogel enhances ASC survival and improves wound healing. To more fully understand the mechanism of this therapy, we examined whether ASC-seeded hydrogels were able to modulate the recruitment and/or functionality of endogenous progenitor cells. Employing a parabiosis model and fluorescence-activated cell sorting analysis, we demonstrate that application of ASC-seeded hydrogels to wounds, when compared with injected ASCs or a noncell control, increased the recruitment of provascular circulating bone marrow-derived mesenchymal progenitor cells (BM-MPCs). BM-MPCs comprised 23.0% of recruited circulating progenitor cells in wounds treated with ASC-seeded hydrogels versus 8.4% and 2.1% in those treated with controls, p < 0.05. Exploring the potential for functional modulation of BM-MPCs, we demonstrate a statistically significant increase in BM-MPC migration, proliferation, and tubulization when exposed to hydrogel-seeded ASC-conditioned medium versus control ASC-conditioned medium (73.8% vs. 51.4% scratch assay closure; 9.1% vs. 1.4% proliferation rate; 10.2 vs. 5.5 tubules/HPF; p < 0.05 for all assays). BM-MPC expression of genes related to cell stemness and angiogenesis was also significantly increased following exposure to hydrogel-seeded ASC-conditioned medium (p < 0.05). These data suggest that ASC-seeded hydrogels improve both progenitor cell recruitment and functionality to effect greater neovascularization.

Journal ArticleDOI
TL;DR: It is shown that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscs when the knee is loaded at full extension.
Abstract: The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200–25...

Journal ArticleDOI
TL;DR: In this paper, the effects of physicochemical properties of composite hydrogels on chondrocyte phenotype maintenance and extracellular matrix (ECM) secretion were investigated, and the results showed that the microstructure and mechanical property of hydrogel composition were relevant to the composition of composite composite hyrogels.
Abstract: Satisfactory repair of damaged articular cartilage is still a challenge, while tissue engineering provides a promising strategy. Collagen-based hydrogels have been widely applied in cartilage tissue engineering due to their biocompatibility. In this study, type I collagen and type II collagen were selected to prepare physically crosslinked composite hydrogels by self-assembly of collagen, and the effects of their physicochemical properties on chondrocyte phenotype maintenance and extracellular matrix (ECM) secretion were investigated. First, the microstructure of hydrogels was observed by a scanning electron microscope, and the compressive modulus was measured by a dynamic mechanical analyzer. Then, chondrocytes were encapsulated in hydrogels and detected by Live/Dead staining. The secretion of ECM was qualitatively estimated by histological staining and quantitatively analyzed by sulfated glycosaminoglycans and DNA content detection. Finally, cartilage-specific gene expression was analyzed by quantitative real-time polymerase chain reaction analysis. The results showed that the microstructure and mechanical property of hydrogels were relevant to the composition of composite hydrogels. The compressive modulus of hydrogels improved with the increase of type I collagen content in the hydrogels. Chondrocytes could maintain their round or oval morphology and secrete cartilage-specific ECM in the four groups of hydrogels, but higher the compressive modulus of composite hydrogels, the more ECM secretion of chondrocytes.

Journal ArticleDOI
TL;DR: DVC appeared to be superior to DCC in both chondroinductivity and rheological performance of hydrogel precursors, and therefore DVC microparticles may hold translational potential for cartilage regeneration.
Abstract: Hydrogel precursors are liquid solutions that are prone to leaking after surgical placement. This problem was overcome by incorporating either decellularized cartilage (DCC) or devitalized cartilage (DVC) microparticles into traditional photocrosslinkable hydrogel precursors in an effort to achieve a paste-like hydrogel precursor. DCC and DVC were selected specifically for their potential to induce chondrogenesis of stem cells, given that materials that are chondroinductive on their own without growth factors are a revolutionary goal in orthopedic medicine. We hypothesized that DVC, lacking the additional chemical processing steps in DCC to remove cell content, would lead to a more chondroinductive hydrogel with rat bone marrow-derived mesenchymal stem cells. Hydrogels composed of methacrylated hyaluronic acid (MeHA) and either DCC or DVC microparticles were tested with and without exposure to transforming growth factor (TGF)-β3 over a 6 week culture period, where swelling, mechanical analysis, and gene expression were observed. For collagen II, Sox-9, and aggrecan expression, MeHA precursors containing DVC consistently outperformed the DCC-containing groups, even when the DCC groups were exposed to TGF-β3. DVC consistently outperformed all TGF-β3-exposed groups in aggrecan and collagen II gene expression as well. In addition, when the same concentrations of MeHA with DCC or DVC microparticles were evaluated for yield stress, the yield stress with the DVC microparticles was 2.7 times greater. Furthermore, the only MeHA-containing group that exhibited shape retention was the group containing DVC microparticles. DVC appeared to be superior to DCC in both chondroinductivity and rheological performance of hydrogel precursors, and therefore DVC microparticles may hold translational potential for cartilage regeneration.

Journal ArticleDOI
TL;DR: Ex vivo implantation with cell-seeded ES collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolding or untreated defects and may therefore be useful in facilitating meniscal repair of avascular meniscus tears.
Abstract: The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling "longitudinal tears" were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears.

Journal ArticleDOI
TL;DR: It was found that the repair of VML injuries using DSM + MM scaffolds significantly increased recovery of peak contractile force compared to unrepaired VML controls, and significant improvements were measured for restoration of muscle mass.
Abstract: Skeletal muscle is capable of robust self-repair following mild trauma, yet in cases of traumatic volumetric muscle loss (VML), where more than 20% of a muscle's mass is lost, this capacity is overwhelmed. Current autogenic whole muscle transfer techniques are imperfect, which has motivated the exploration of implantable scaffolding strategies. In this study, the use of an allogeneic decellularized skeletal muscle (DSM) scaffold with and without the addition of minced muscle (MM) autograft tissue was explored as a repair strategy using a lower-limb VML injury model (n = 8/sample group). We found that the repair of VML injuries using DSM + MM scaffolds significantly increased recovery of peak contractile force (81 ± 3% of normal contralateral muscle) compared to unrepaired VML controls (62 ± 4%). Similar significant improvements were measured for restoration of muscle mass (88 ± 3%) in response to DSM + MM repair compared to unrepaired VML controls (79 ± 3%). Histological findings revealed a marked decreas...

Journal ArticleDOI
TL;DR: In this paper, a shape-memory alginate scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage.
Abstract: Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration. To this end, a scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage. Shape-memory properties were introduced by covalent cross-linking alginate using carbodiimide chemistry, while the architecture of the scaffold was modified using a directional freezing tec...

Journal ArticleDOI
TL;DR: Microarray analysis showed that MC was conducive to express osteogenesis-related genes, such as BMP-2, COL1A1, and CTSK, and stimulate osteogenic differentiation,such as osteoblast differentiation pathway and skeletal system development pathway.
Abstract: In this study, human mesenchymal stem cells (hMSCs) were cultured on the hydroxyapatite (HA) and mineralized collagen (MC), and their proliferation, adhesion, and differentiation, especially the molecular mechanisms on gene level, were investigated. Proliferation and morphological responses of hMSCs and their osteogenic differentiation were detected by quantitative detection of alkaline phosphatase. Gene expression profilings were examined by microarrays, and the gene expression data were studied through gene ontology terms and pathway analyses. The results showed that MC promoted cell proliferation and osteogenic differentiation of hMSCs. Microarray analysis showed that MC was conducive to express osteogenesis-related genes, such as BMP-2, COL1A1, and CTSK, and stimulate osteogenic differentiation, such as osteoblast differentiation pathway and skeletal system development pathway.

Journal ArticleDOI
TL;DR: It is demonstrated that readily available decellularized scaECM can be promptly revitalized with autologous cells in a 3-week period before implantation, indicating applicability as a future platform for vascular reconstructive procedures.
Abstract: Effective cellularization is a key approach to prevent small-caliber (<4 mm) tissue-engineered vascular graft (TEVG) failure and maintain patency and contractility following implantation. To achieve this goal, however, improved biomimicking designs and/or relatively long production times (typically several months) are required. We previously reported on porcine carotid artery decellularization yielding biomechanically stable and cell supportive small-caliber (3-4 mm diameter, 5 cm long) arterial extracellular matrix (scaECM) vascular grafts. In this study, we aimed to study the scaECM graft patency in vivo and possibly improve that patency by graft pre-endothelialization with the recipient porcine autologous cells using our previously reported custom-designed dynamic perfusion bioreactor system. Decellularized scaECM vascular grafts were histologically characterized, their immunoreactivity studied in vitro, and their biocompatibility profile evaluated as a xenograft subcutaneous implantation in a mouse model. To study the scaECM cell support and remodeling ability, pig autologous endothelial and smooth muscle cells (SMCs) were seeded and dynamically cultivated within the scaECM lumen and externa/media, respectively. Finally, endothelialized-only scaECMs-hypothesized as a prerequisite for maintaining graft patency and controlling intimal hyperplasia-were transplanted as an interposition carotid artery graft in a porcine model. Graft patency was evaluated through angiography online and endpoint pathological assessment for up to 6 weeks. Our results demonstrate the scaECM-TEVG biocompatibility preserving a structurally and mechanically stable vascular wall not just following decellularization and recellularization but also after implantation. Using our dynamic perfusion bioreactor, we successfully demonstrated the ability of this TEVG to support in vitro recellularization and remodeling by primary autologous endothelial and SMCs, which were seeded on the lumen and the externa/media layers, respectively. Following transplantation, dynamically endothelialized scaECM-TEVGs remained patent for 6 weeks in a pig carotid interposition bypass model. When compared with nonrevitalized control grafts, reendothelialized grafts provided excellent antithrombogenic activity, inhibited intimal hyperplasia formation, and encouraged media wall infiltration and reorganization with recruited host SMCs. We thus demonstrate that readily available decellularized scaECM can be promptly revitalized with autologous cells in a 3-week period before implantation, indicating applicability as a future platform for vascular reconstructive procedures.

Journal ArticleDOI
TL;DR: In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may help promote wound healing in highly inflammatory wounds, such as burns and chronic wounds.
Abstract: Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may help promote wound healing in highly inflammatory wounds, such as burns and chronic wounds.

Journal ArticleDOI
TL;DR: As with previous studies, increases in matrix metalloproteinases (MMPs) and proinflammatory cytokines associated with the early stages of osteoarthritis were observed during NC-AM coculture, as were decreases in protein-level Aggrecan and collagen II.
Abstract: The goal of the present study was to develop a fully three-dimensional (3D) coculture system that would allow for systematic evaluation of the interplay between activated macrophages (AMs) and chondrocytes in osteoarthritic disease progression and treatment. Toward this end, our coculture system was first validated against existing in vitro osteoarthritis models, which have generally cultured healthy normal chondrocytes (NCs)-in two-dimensional (2D) or 3D-with proinflammatory AMs in 2D. In this work, NCs and AMs were both encapsulated within poly(ethylene glycol) diacrylate hydrogels to mimic the native 3D environments of both cell types within the osteoarthritic joint. As with previous studies, increases in matrix metalloproteinases (MMPs) and proinflammatory cytokines associated with the early stages of osteoarthritis were observed during NC-AM coculture, as were decreases in protein-level Aggrecan and collagen II. Thereafter, the coculture system was extended to osteoarthritic chondrocytes (OACs) and AMs to evaluate the potential effects of AMs on pre-existing osteoarthritic phenotypes. OACs in coculture with AMs expressed significantly higher levels of MMP-1, MMP-3, MMP-9, MMP-13, IL-1β, TNF-α, IL-6, IL-8, and IFN-γ compared to OACs in mono-culture, indicating that proinflammatory macrophages may intensify the abnormal matrix degradation and cytokine secretion already associated with OACs. Likewise, AMs cocultured with OACs expressed significantly more IL-1β and VEGF-A compared to AM mono-culture controls, suggesting that OACs may intensify abnormal macrophage activation. Finally, OACs cultured in the presence of nonactivated macrophages produced lower levels of MMP-9 and proinflammatory cytokines IL-1β, TNF-α, and IFN-γ compared to OACs in the OAC-AM system, results that are consistent with anti-inflammatory agents temporarily reducing certain OA symptoms. In summary, the 3D coculture system developed herein captures several key features of inflammatory OA and may prove useful in future screening of therapeutic agents and/or assessment of disease progression mechanisms.

Journal ArticleDOI
TL;DR: The ability to maintain microstructural control within engineered heart tissue enables generation of more complex features, such as cellular alignment and a vasculature, which paves the way for the use of large scale engineered tissues for myocardial regeneration and cardiac disease modeling.
Abstract: Cardiac tissue engineering is a strategy to replace damaged contractile tissue and model cardiac diseases to discover therapies. Current cardiac and vascular engineering approaches independently create aligned contractile tissue or perfusable vasculature, but a combined vascularized cardiac tissue remains to be achieved. Here, we sought to incorporate a patterned microvasculature into engineered heart tissue, which balances the competing demands from cardiomyocytes to contract the matrix versus the vascular lumens that need structural support. Low-density collagen hydrogels (1.25 mg/mL) permit human embryonic stem cell-derived cardiomyocytes (hESC-CMs) to form a dense contractile tissue but cannot support a patterned microvasculature. Conversely, high collagen concentrations (density ≥6 mg/mL) support a patterned microvasculature, but the hESC-CMs lack cell-cell contact, limiting their electrical communication, structural maturation, and tissue-level contractile function. When cocultured with matrix remodeling stromal cells, however, hESC-CMs structurally mature and form anisotropic constructs in high-density collagen. Remodeling requires the stromal cells to be in proximity with hESC-CMs. In addition, cocultured cardiac constructs in dense collagen generate measurable active contractions (on the order of 0.1 mN/mm(2)) and can be paced up to 2 Hz. Patterned microvascular networks in these high-density cocultured cardiac constructs remain patent through 2 weeks of culture, and hESC-CMs show electrical synchronization. The ability to maintain microstructural control within engineered heart tissue enables generation of more complex features, such as cellular alignment and a vasculature. Successful incorporation of these features paves the way for the use of large scale engineered tissues for myocardial regeneration and cardiac disease modeling.

Journal ArticleDOI
TL;DR: This study showed that the optimized TM is needed for efficient and rapid in vitro tenogenic extracellular matrix production of hASCs, thus demonstrating the potential clinical relevance of this novel and emerging approach to tendon injury treatments in the future.
Abstract: Growing number of musculoskeletal defects increases the demand for engineered tendon. Our aim was to find an efficient strategy to produce tendon-like matrix in vitro. To allow efficient differentiation of human adipose stem cells (hASCs) toward tendon tissue, we tested different medium compositions, biomaterials, and scaffold structures in preliminary tests. This is the first study to report that medium supplementation with 50 ng/mL of growth and differentiation factor-5 (GDF-5) and 280 μM l-ascorbic acid are essential for tenogenic differentiation of hASCs. Tenogenic medium (TM) was shown to significantly enhance tendon-like matrix production of hASCs compared to other tested media groups. Cell adhesion, proliferation, and tenogenic differentiation of hASCs were supported on braided poly(l/d)lactide (PLA) 96l/4d copolymer filament scaffolds in TM condition compared to foamed poly(l-lactide-co-ɛ-caprolactone) (PLCL) 70L/30CL scaffolds. A uniform cell layer formed on braided PLA 96/4 scaffolds when hASCs were cultured in TM compared to maintenance medium (MM) condition after 14 days of culture. Furthermore, total collagen content and gene expression of tenogenic marker genes were significantly higher in TM condition after 2 weeks of culture. The elastic modulus of PLA 96/4 scaffold was more similar to the elastic modulus reported for native Achilles tendon. Our study showed that the optimized TM is needed for efficient and rapid in vitro tenogenic extracellular matrix production of hASCs. PLA 96/4 scaffolds together with TM significantly stimulated hASCs, thus demonstrating the potential clinical relevance of this novel and emerging approach to tendon injury treatments in the future.

Journal ArticleDOI
TL;DR: The authors used alginate-encapsulated human mesenchymal stem cells for the culture of a tissue-engineered bone construct in the size and shape of the superior half of an adult human femur.
Abstract: Within the field of tissue engineering and regenerative medicine, the fabrication of tissue grafts of any significant size--much less a whole organ or tissue--remains a major challenge. Currently, tissue-engineered constructs cultured in vitro have been restrained in size primarily due to the diffusion limit of oxygen and nutrients to the center of these grafts. Previously, we developed a novel tubular perfusion system (TPS) bioreactor, which allows the dynamic culture of bead-encapsulated cells and increases the supply of nutrients to the entire cell population. More interestingly, the versatility of TPS bioreactor allows a large range of engineered tissue volumes to be cultured, including large bone grafts. In this study, we utilized alginate-encapsulated human mesenchymal stem cells for the culture of a tissue-engineered bone construct in the size and shape of the superior half of an adult human femur (∼ 200 cm(3)), a 20-fold increase over previously reported volumes of in vitro engineered bone grafts. Dynamic culture in TPS bioreactor not only resulted in high cell viability throughout the femur graft, but also showed early signs of stem cell differentiation through increased expression of osteogenic genes and proteins, consistent with our previous models of smaller bone constructs. This first foray into full-scale bone engineering provides the foundation for future clinical applications of bioengineered bone grafts.

Journal ArticleDOI
TL;DR: The results showed that tECM enhances the proliferation and transforming growth factor (TGF)-β3-induced tenogenesis of ASCs in both plate and scaffold cultures in vitro, and modulates matrix deposition ofASCs seeded in scaffolds.
Abstract: Because of the limited and unsatisfactory outcomes of clinical tendon repair, tissue engineering approaches using adult mesenchymal stem cells are being considered a promising alternative strategy to heal tendon injuries. Successful and functional tendon tissue engineering depends on harnessing the biochemical cues presented by the native tendon extracellular matrix (ECM) and the embedded tissue-specific biofactors. In this study, we have prepared and characterized the biological activities of a soluble extract of decellularized tendon ECM (tECM) on adult adipose-derived stem cells (ASCs), on the basis of histological, biochemical, and gene expression analyses. The results showed that tECM enhances the proliferation and transforming growth factor (TGF)-β3-induced tenogenesis of ASCs in both plate and scaffold cultures in vitro, and modulates matrix deposition of ASCs seeded in scaffolds. These findings suggest that combining tendon ECM extract with TGF-β3 treatment is a possible alternative approach to induce tenogenesis for ASCs.