scispace - formally typeset
Open AccessJournal ArticleDOI

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

TLDR
It is shown that using cesium ions along with formamidinium cations in lead bromide–iodide cells improved thermal and photostability and lead to high efficiency in single and tandem cells.
Abstract
Metal halide perovskite photovoltaic cells could potentially boost the efficiency of commercial silicon photovoltaic modules from ∼20 toward 30% when used in tandem architectures. An optimum perovskite cell optical band gap of ~1.75 electron volts (eV) can be achieved by varying halide composition, but to date, such materials have had poor photostability and thermal stability. Here we present a highly crystalline and compositionally photostable material, [HC(NH2)2](0.83)Cs(0.17)Pb(I(0.6)Br(0.4))3, with an optical band gap of ~1.74 eV, and we fabricated perovskite cells that reached open-circuit voltages of 1.2 volts and power conversion efficiency of over 17% on small areas and 14.7% on 0.715 cm(2) cells. By combining these perovskite cells with a 19%-efficient silicon cell, we demonstrated the feasibility of achieving >25%-efficient four-terminal tandem cells.

read more

Citations
More filters
Journal ArticleDOI

Sequential Introduction of Cations Deriving Large‐Grain CsxFA1−xPbI3 Thin Film for Planar Hybrid Solar Cells: Insight into Phase‐Segregation and Thermal‐Healing Behavior

TL;DR: The present findings demonstrated that suppressing phase-segregation of mixed-cation perovskites by meticulous composition engineering is significant for further development of efficient photovoltaics and suggested that phase-pure Cs0.15FA0.85PbI3 may be a promising candidate with superior phase-durability.
Journal ArticleDOI

Textured CH3NH3PbI3 thin Film with Enhanced Stability for High Performance Perovskite Solar Cells

TL;DR: In this paper, a high crystallinity perovskite MAPbI 3 with texture structure prepared from HPbI3 reacted with low partial pressure (LPP) MA gas, that has substantially higher both thermal and moisture stability than polycrystalline perovsite (PP) prepared from MAI+PbI 2.
Journal ArticleDOI

Photophysical Properties and Improved Stability of Organic–Inorganic Perovskite by Surface Passivation

TL;DR: In this paper, a defect passivation strategy was proposed to enhance the stability of perovskite materials and improve the performance of the perovskiy materials, particularly those related to surface states.
References
More filters
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Journal ArticleDOI

Efficient planar heterojunction perovskite solar cells by vapour deposition

TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Journal ArticleDOI

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells

TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Journal ArticleDOI

The emergence of perovskite solar cells

TL;DR: In this article, a review describes the rapid progress that has been made in hybrid organic-inorganic perovskite solar cells and their applications in the photovoltaic sector.
Related Papers (5)