scispace - formally typeset
Journal ArticleDOI

A one-way quantum computer.

Robert Raussendorf, +1 more
- 28 May 2001 - 
- Vol. 86, Iss: 22, pp 5188-5191
Reads0
Chats0
TLDR
A scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states, which are thus one-way quantum computers and the measurements form the program.
Abstract
We present a scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states. The measurements are used to imprint a quantum logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus one-way quantum computers and the measurements form the program.

read more

Citations
More filters
Journal ArticleDOI

Atom detection and photon production in a scalable, open, optical microcavity.

TL;DR: The cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers to build an optical microcavity network on an atom chip for applications in quantum information processing.
Journal ArticleDOI

Chip-based photon quantum state sources using nonlinear optics

TL;DR: In this paper, the authors review recent developments in the realisation of integrated sources of photonic quantum states, focusing on approaches based on nonlinear optics that are compatible with contemporary optical fibre telecommunications and quantum memory infrastructures as well as with chip-scale semiconductor technology.
Journal ArticleDOI

Exploring quantum matter with ultracold atoms in optical lattices

TL;DR: In this paper, a review of a series of experiments with ultracold quantum gases in optical lattices is presented, showing that the granularity of the matter wave field, caused by the discreteness of atoms, gives rise to effects going beyond the simple single matter wave description.
Journal ArticleDOI

Parallelizing quantum circuits

TL;DR: A novel automated technique is presented for the first time a full characterization of patterns with flow of arbitrary depth, based on the notion of influencing walks and a simple rewriting system on the angles of the measurement, which proves a logarithmic separation in terms of quantum depth between the quantum circuit model and the measurement-based model.
References
More filters
Journal ArticleDOI

Elementary gates for quantum computation.

TL;DR: U(2) gates are derived, which derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number of unitary operations on arbitrarily many bits.
Journal ArticleDOI

Quantum information and computation

TL;DR: In information processing, as in physics, the classical world view provides an incomplete approximation to an underlying quantum reality that can be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.
Journal ArticleDOI

Good quantum error-correcting codes exist

TL;DR: The techniques investigated in this paper can be extended so as to reduce the accuracy required for factorization of numbers large enough to be difficult on conventional computers appears to be closer to one part in billions.
Journal ArticleDOI

Error Correcting Codes in Quantum Theory.

TL;DR: It is shown that a pair of states which are, in a certain sense, “macroscopically different,” can form a superposition in which the interference phase between the two parts is measurable, providing a highly stabilized “Schrodinger cat” state.
Journal ArticleDOI

Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations

TL;DR: It is shown that single quantum bit operations, Bell-basis measurements and certain entangled quantum states such as Greenberger–Horne–Zeilinger (GHZ) states are sufficient to construct a universal quantum computer.
Related Papers (5)