scispace - formally typeset
Open accessJournal ArticleDOI: 10.3389/FPLS.2021.615114

Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress.

04 Mar 2021-Frontiers in Plant Science (Frontiers Media SA)-Vol. 12, pp 615114-615114
Abstract: Abscisic acid (ABA) is a stress hormone that accumulates under different abiotic and biotic stresses. A typical effect of ABA on leaves is to reduce transpirational water loss by closing stomata and parallelly defend against microbes by restricting their entry through stomatal pores. ABA can also promote the accumulation of polyamines, sphingolipids, and even proline. Stomatal closure by compounds other than ABA also helps plant defense against both abiotic and biotic stress factors. Further, ABA can interact with other hormones, such as methyl jasmonate (MJ) and salicylic acid (SA). Such cross-talk can be an additional factor in plant adaptations against environmental stresses and microbial pathogens. The present review highlights the recent progress in understanding ABA's multifaceted role under stress conditions, particularly stomatal closure. We point out the importance of reactive oxygen species (ROS), reactive carbonyl species (RCS), nitric oxide (NO), and Ca2+ in guard cells as key signaling components during the ABA-mediated short-term plant defense reactions. The rise in ROS, RCS, NO, and intracellular Ca2+ triggered by ABA can promote additional events involved in long-term adaptive measures, including gene expression, accumulation of compatible solutes to protect the cell, hypersensitive response (HR), and programmed cell death (PCD). Several pathogens can counteract and try to reopen stomata. Similarly, pathogens attempt to trigger PCD of host tissue to their benefit. Yet, ABA-induced effects independent of stomatal closure can delay the pathogen spread and infection within leaves. Stomatal closure and other ABA influences can be among the early steps of defense and a crucial component of plants' innate immunity response. Stomatal guard cells are quite sensitive to environmental stress and are considered good model systems for signal transduction studies. Further research on the ABA-induced stomatal closure mechanism can help us design strategies for plant/crop adaptations to stress.

... read more

Topics: Biotic stress (59%), Abscisic acid (54%), Abiotic stress (53%) ... show more
Citations
  More

14 results found


Journal ArticleDOI: 10.1016/J.TPLANTS.2021.07.016
Abstract: Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitters, which are involved in almost all plant physiological and stress-related processes. With its antioxidant regulatory properties, NO on its own ameliorates plant stress, while H2S, a foul-smelling gas, has differential effects. Recent studies have shown that these signaling molecules are involved in intertwined pathway networks. This is due to the contrasting effects of NO and H2S depending on cell type, subcellular compartment, and redox status, as well as the flux and dosage of NO and H2S in different plant species and cellular contexts. Here, we provide a comprehensive review of the complex networks of these molecules, with particular emphasis on root development, stomatal movement, and plant cell death.

... read more

Topics: Gasotransmitters (54%)

4 Citations


Open accessJournal ArticleDOI: 10.3390/PLANTS10081704
Ekaterina Sukhova1, Vladimir Sukhov1Institutions (1)
19 Aug 2021-
Abstract: In environmental conditions, plants are affected by abiotic and biotic stressors which can be heterogenous. This means that the systemic plant adaptive responses on their actions require long-distance stress signals including electrical signals (ESs). ESs are based on transient changes in the activities of ion channels and H+-ATP-ase in the plasma membrane. They influence numerous physiological processes, including gene expression, phytohormone synthesis, photosynthesis, respiration, phloem mass flow, ATP content, and many others. It is considered that these changes increase plant tolerance to the action of stressors; the effect can be related to stimulation of damages of specific molecular structures. In this review, we hypothesize that programmed cell death (PCD) in plant cells can be interconnected with ESs. There are the following points supporting this hypothesis. (i) Propagation of ESs can be related to ROS waves; these waves are a probable mechanism of PCD initiation. (ii) ESs induce the inactivation of photosynthetic dark reactions and activation of respiration. Both responses can also produce ROS and, probably, induce PCD. (iii) ESs stimulate the synthesis of stress phytohormones (e.g., jasmonic acid, salicylic acid, and ethylene) which are known to contribute to the induction of PCD. (iv) Generation of ESs accompanies K+ efflux from the cytoplasm that is also a mechanism of induction of PCD. Our review argues for the possibility of PCD induction by electrical signals and shows some directions of future investigations in the field.

... read more

3 Citations


Open accessJournal ArticleDOI: 10.3390/PLANTS10101982
22 Sep 2021-
Abstract: Soil flooding severely impairs agricultural crop production. Plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by the elaborated hormonal signaling network. The most prominent of these hormones is ethylene, which has been firmly established as a critical signal in flooding tolerance. ABA (abscisic acid) is also known as a “stress hormone” that modulates various responses to abiotic stresses; however, its role in flooding tolerance remains much less established. Here, we discuss the progress made in the elucidation of morphological adaptations regulated by ABA and its crosstalk with other phytohormones under flooding conditions in model plants and agriculturally important crops.

... read more

1 Citations


Open accessJournal ArticleDOI: 10.3390/IJMS22168865
Huai Yang1, Peigao Luo1Institutions (1)
Abstract: Photosynthesis is a universal process for plant survival, and immune defense is also a key process in adapting to the growth environment. Various studies have indicated that these two processes are interconnected in a complex network. Photosynthesis can influence signaling pathways and provide both materials and energy for immune defense, while the immune defense process can also have feedback effects on photosynthesis. Pathogen infection inevitably leads to changes in photosynthesis parameters, including Pn, Gs, and Ci; biochemical materials such as SOD and CAT; signaling molecules such as H2O2 and hormones; and the expression of genes involved in photosynthesis. Some researchers have found that changes in photosynthesis activity are related to the resistance level of the host, the duration after infection, and the infection position (photosynthetic source or sink). Interactions between wheat and the main fungal pathogens, such as Puccinia striiformis, Blumeria graminis, and Fusarium graminearum, constitute an ideal study system to elucidate the relationship between changes in host photosynthesis and resistance levels, based on the accessibility of methods for artificially controlling infection and detecting changes in photosynthesis, the presence of multiple pathogens infecting different positions, and the abundance of host materials with various resistance levels. This review is written only from the perspective of plant pathologists, and after providing an overview of the available data, we generally found that changes in photosynthesis in the early stage of pathogen infection could be a causal factor influencing acquired resistance, while those in the late stage could be the result of resistance formation.

... read more

1 Citations


Open accessJournal ArticleDOI: 10.3390/PLANTS10091939
17 Sep 2021-
Abstract: Global climate change and associated adverse abiotic and biotic stress conditions affect plant growth and development, and agricultural sustainability in general. Abiotic and biotic stresses reduce respiration and associated energy generation in mitochondria, resulting in the elevated production of reactive oxygen species (ROS), which are employed to transmit cellular signaling information in response to the changing conditions. Excessive ROS accumulation can contribute to cell damage and death. Production of the non-protein amino acid γ-aminobutyrate (GABA) is also stimulated, resulting in partial restoration of respiratory processes and energy production. Accumulated GABA can bind directly to the aluminum-activated malate transporter and the guard cell outward rectifying K+ channel, thereby improving drought and hypoxia tolerance, respectively. Genetic manipulation of GABA metabolism and receptors, respectively, reveal positive relationships between GABA levels and abiotic/biotic stress tolerance, and between malate efflux from the root and heavy metal tolerance. The application of exogenous GABA is associated with lower ROS levels, enhanced membrane stability, changes in the levels of non-enzymatic and enzymatic antioxidants, and crosstalk among phytohormones. Exogenous GABA may be an effective and sustainable tolerance strategy against multiple stresses under field conditions.

... read more

Topics: Biotic stress (60%), Abiotic stress (54%), Guard cell (50%)

1 Citations


References
  More

221 results found


Open accessJournal ArticleDOI: 10.1016/J.CELL.2016.08.029
Jian-Kang Zhu1Institutions (1)
06 Oct 2016-Cell
Abstract: As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.

... read more

Topics: Abiotic stress (63%), Water transport (55%)

1,694 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2006.06.054
08 Sep 2006-Cell
Abstract: Microbial entry into host tissue is a critical first step in causing infection in animals and plants. In plants, it has been assumed that microscopic surface openings, such as stomata, serve as passive ports of bacterial entry during infection. Surprisingly, we found that stomatal closure is part of a plant innate immune response to restrict bacterial invasion. Stomatal guard cells of Arabidopsis perceive bacterial surface molecules, which requires the FLS2 receptor, production of nitric oxide, and the guard-cell-specific OST1 kinase. To circumvent this innate immune response, plant pathogenic bacteria have evolved specific virulence factors to effectively cause stomatal reopening as an important pathogenesis strategy. We provide evidence that supports a model in which stomata, as part of an integral innate immune system, act as a barrier against bacterial infection.

... read more

Topics: Entry into host (57%), Innate immune system (56%), Plant Stomata (54%)

1,489 Citations


Journal ArticleDOI: 10.1146/ANNUREV-PHYTO-073009-114447
Abstract: Until recently, most studies on the role of hormones in plant-pathogen interactions focused on salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). It is now clear that pathogen-induced modulation of signaling via other hormones contributes to virulence. A picture is emerging of complex crosstalk and induced hormonal changes that modulate disease and resistance, with outcomes dependent on pathogen lifestyles and the genetic constitution of the host. Recent progress has revealed intriguing similarities between hormone signaling mechanisms, with gene induction responses often achieved by derepression. Here, we report on recent advances, updating current knowledge on classical defense hormones SA, JA, and ET, and the roles of auxin, abscisic acid (ABA), cytokinins (CKs), and brassinosteroids in molding plant-pathogen interactions. We highlight an emerging theme that positive and negative regulators of these disparate hormone signaling pathways are crucial regulatory targets of hormonal crosstalk in disease and defense.

... read more

Topics: Plant disease (56%), Jasmonic acid (55%), Jasmonate (54%) ... show more

1,358 Citations


Open accessJournal ArticleDOI: 10.1105/TPC.104.025833
01 Dec 2004-The Plant Cell
Abstract: The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene–activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.

... read more

Topics: Jasmonate (59%), Methyl jasmonate (56%), Jasmonic acid (55%) ... show more

976 Citations


Journal ArticleDOI: 10.1016/J.TPLANTS.2010.04.006
Abstract: Plant productivity is continuously challenged by pathogen attack and abiotic stress such as drought and salt stress. The phytohormone abscisic acid (ABA) is a key endogenous messenger in plants' responses to such stresses and understanding ABA signalling is essential for improving plant performance in the future. Since the discovery of ABA as a leaf abscission- and seed dormancy-promoting sesquiterpenoid in the 1960s, our understanding of the action of the phytohormone ABA has come a long way. Recent breakthroughs in the field of ABA signalling now unfold a unique hormone perception mechanism where binding of ABA to the ABA receptors RCARs/PYR1/PYLs leads to inactivation of type 2C protein phosphatases such as ABI1 and ABI2. The protein phosphatases seem to function as coreceptors and their inactivation launches SNF1-type kinase action which targets ABA-dependent gene expression and ion channels.

... read more

Topics: Pyrabactin (64%), Abscisic acid (52%)

866 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20222
202112