scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/J.OMTN.2020.11.007

Adeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting PGC-1alpha

05 Mar 2021-Molecular therapy. Nucleic acids (Cell Press)-Vol. 23, pp 406-417
Abstract: MicroRNAs (miRNAs) are important regulators in the process of cardiac hypertrophy and heart failure. Previous studies have shown that miR-199a is upregulated in pressure-overload cardiac hypertrophy and that inhibition of miR-199a attenuates cardiac hypertrophy in vitro. However, the therapeutic role of anti-miR-199a treatment in the cardiac hypertrophy in vivo model is less known. Here, we show an efficient and useful method to treat mouse cardiac hypertrophy and restore cardiac function through injection of adeno-associated virus (AAV)-mediated anti-miR-199a tough decoys (TuDs). RNA-seq transcriptome analysis indicated that genes related to cytoplasmic translation and mitochondrial respiratory chain complex assembly were upregulated in anti-miR-199a-treated recovered hearts. We further validated that PGC-1α is the direct target of miR-199a involved in the therapeutic effect and the regulation of the PGC-1α/ERRα axis and that the downstream pathway of mitochondrial fatty acid oxidation and oxidative phosphorylation constitute the underlying mechanism of the restored mitochondrial structure and function in our anti-miR-199a-treated mice. Our study highlights the important regulatory role of miR-199a in cardiac hypertrophy and the value of the AAV-mediated miRNA delivery system.

... read more

Citations
  More

8 results found


Open accessJournal Article
Abstract: Rationale:Inhibition of glycogen synthase kinase-3 (GSK-3) protects the heart during ischemia/reperfusion (I/R), yet the underlying mechanisms of cardioprotection afforded by beta isoform-specific inhibition GSK-3 remain to be elucidated. Objective:We studied the molecular mechanism mediating the effect of GSK-3β activation/inhibition upon myocardial injury during prolonged ischemia and I/R. Methods and Results:Beta isoform–specific inhibition of GSK-3 by dominant negative GSK-3β in transgenic mice (Tg-DnGSK-3β) or in heterozygous GSK-3β knock-out mice (GSK-3β+/−) significantly increased, whereas activation of GSK-3β in constitutively active GSK-3β knock-in mice (βKI) significantly decreased, myocardial ischemic injury after prolonged ischemia. In contrast, inhibition of GSK-3β in Tg-DnGSK-3β or GSK-3β+/− significantly reduced, while activation of GSK-3β in βKI significantly enhanced, myocardial I/R injury. Inhibition of GSK-3β stimulated mTOR signaling and inhibited autophagy through a rapamycin-sensitiv...

... read more

Topics: Ischemia (56%), Cardioprotection (55%), Glycogen synthase (50%)

35 Citations


Journal ArticleDOI: 10.1016/J.BCP.2020.114371
Abstract: PolyPurine Reverse Hoogsteen hairpins (PPRHs) are DNA hairpins formed by intramolecular reverse Hoogsteen bonds which can bind to polypyrimidine stretches in dsDNA by Watson:Crick bonds, thus forming a triplex and displacing the fourth strand of the DNA complex. PPRHs were first described as a gene silencing tool in vitro for DHFR, telomerase and survivin genes. Then, the effect of PPRHs directed against the survivin gene was also determined in vivo using a xenograft model of prostate cancer cells (PC3). Since then, the ability of PPRHs to inhibit gene expression has been explored in other genes involved in cancer (BCL-2, mTOR, topoisomerase, C-MYC and MDM2), in immunotherapy (SIRPα/CD47 and PD-1/PD-L1 tandem) or in replication stress (WEE1 and CHK1). Furthermore, PPRHs have the ability to target the complementary strand of a G-quadruplex motif as a regulatory element of the TYMS gene. PPRHs have also the potential to correct point mutations in the DNA as shown in two collections of CHO cell lines bearing mutations in either the dhfr or aprt loci. Finally, based on the capability of PPRHs to form triplexes, they have been incorporated as probes in biosensors for the determination of the DNA methylation status of PAX-5 in cancer and the detection of mtLSU rRNA for the diagnosis of Pneumocystis jirovecii. Of note, PPRHs have high stability and do not present immunogenicity, hepatotoxicity or nephrotoxicity in vitro. Overall, PPRHs constitute a new economical biotechnological tool with multiple biomedical applications.

... read more

Topics: DNA (51%)

2 Citations


Open accessJournal ArticleDOI: 10.1186/S13287-021-02363-0
Danyang Zheng1, Henan Zhou1, Hongchen Wang1, Yu Zhu1  +4 moreInstitutions (1)
Abstract: Background Sepsis is a major cause of death in ICU, and intestinal barrier dysfunction is its important complication, while the treatment is limited. Recently, mesenchymal stem cell-derived microvesicles (MMVs) attract much attention as a strategy of cell-free treatment; whether MMVs are therapeutic in sepsis induced-intestinal barrier dysfunction is obscure. Methods In this study, cecal ligation and puncture-induced sepsis rats and lipopolysaccharide-stimulated intestinal epithelial cells to investigate the effect of MMVs on intestinal barrier dysfunction. MMVs were harvested from mesenchymal stem cells and were injected into sepsis rats, and the intestinal barrier function was measured. Afterward, MMVs were incubated with intestinal epithelial cells, and the effect of MMVs on mitochondrial dynamic balance was measured. Then the expression of mfn1, mfn2, OPA1, and PGC-1α in MMVs were measured by western blot. By upregulation and downregulation of mfn2 and PGC-1α, the role of MMVs in mitochondrial dynamic balance was investigated. Finally, the role of MMV-carried mitochondria in mitochondrial dynamic balance was investigated. Results MMVs restored the intestinal barrier function by improving mitochondrial dynamic balance and metabolism of mitochondria. Further study revealed that MMVs delivered mfn2 and PGC-1α to intestinal epithelial cells, and promoted mitochondrial fusion and biogenesis, thereby improving mitochondrial dynamic balance. Furthermore, MMVs delivered functional mitochondria to intestinal epithelial cells and enhanced energy metabolism directly. Conclusion MMVs can deliver mfn2, PGC-1α, and functional mitochondria to intestinal epithelial cells, synergistically improve mitochondrial dynamic balance of target cells after sepsis, and restore the mitochondrial function and intestinal barrier function. The study illustrated that MMVs might be a promising strategy for the treatment of sepsis.

... read more

Topics: MFN2 (54%), mitochondrial fusion (53%), Barrier function (51%)

2 Citations


Open accessJournal ArticleDOI: 10.3389/FCELL.2021.695114
Abstract: Dysregulation of the Notch pathway is implicated in the pathophysiology of cardiovascular diseases (CVDs), but, as of today, therapies based on the re-establishing the physiological levels of Notch in the heart and vessels are not available. A possible reason is the context-dependent role of Notch in the cardiovascular system, which would require a finely tuned, cell-specific approach. MicroRNAs (miRNAs) are short functional endogenous, non-coding RNA sequences able to regulate gene expression at post-transcriptional levels influencing most, if not all, biological processes. Dysregulation of miRNAs expression is implicated in the molecular mechanisms underlying many CVDs. Notch is regulated and regulates a large number of miRNAs expressed in the cardiovascular system and, thus, targeting these miRNAs could represent an avenue to be explored to target Notch for CVDs. In this Review, we provide an overview of both established and potential, based on evidence in other pathologies, crosstalks between miRNAs and Notch in cellular processes underlying atherosclerosis, myocardial ischemia, heart failure, calcification of aortic valve, and arrhythmias. We also discuss the potential advantages, as well as the challenges, of using miRNAs for a Notch-based approach for the diagnosis and treatment of the most common CVDs.

... read more

Topics: Notch signaling pathway (62%)

1 Citations


Open accessJournal ArticleDOI: 10.3389/FCVM.2021.773083
Huatao Zhou1, Weijie Tang1, Jinfu Yang1, Jun Peng1  +2 moreInstitutions (1)
Abstract: Heart failure (HF) describes a group of manifestations caused by the failure of heart function as a pump that supports blood flow through the body. MicroRNAs (miRNAs), as one type of non-coding RNA molecule, have crucial roles in the etiology of HF. Accordingly, miRNAs related to HF may represent potential novel therapeutic targets. In this review, we first discuss the different roles of miRNAs in the development and diseases of the heart. We then outline commonly used miRNA chemical modifications and delivery systems. Further, we summarize the opportunities and challenges for HF-related miRNA therapeutics targets, and discuss the first clinical trial of an antisense drug (CDR132L) in patients with HF. Finally, we outline current and future challenges and potential new directions for miRNA-based therapeutics for HF.

... read more


References
  More

46 results found


Open accessJournal ArticleDOI: 10.1172/JCI10268
Abstract: Cardiac mitochondrial function is altered in a variety of inherited and acquired cardiovascular diseases. Recent studies have identified the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) as a regulator of mitochondrial function in tissues specialized for thermogenesis, such as brown adipose. We sought to determine whether PGC-1 controlled mitochondrial biogenesis and energy-producing capacity in the heart, a tissue specialized for high-capacity ATP production. We found that PGC-1 gene expression is induced in the mouse heart after birth and in response to short-term fasting, conditions known to increase cardiac mitochondrial energy production. Forced expression of PGC-1 in cardiac myocytes in culture induced the expression of nuclear and mitochondrial genes involved in multiple mitochondrial energy-transduction/energy-production pathways, increased cellular mitochondrial number, and stimulated coupled respiration. Cardiac-specific overexpression of PGC-1 in transgenic mice resulted in uncontrolled mitochondrial proliferation in cardiac myocytes leading to loss of sarcomeric structure and a dilated cardiomyopathy. These results identify PGC-1 as a critical regulatory molecule in the control of cardiac mitochondrial number and function in response to energy demands.

... read more

Topics: Mitochondrial biogenesis (74%), PPARGC1A (66%), DNAJA3 (63%) ... read more

1,137 Citations


Open accessJournal ArticleDOI: 10.1161/CIRCRESAHA.108.193102
Shweta Rane1, Minzhen He, Danish Sayed, Himanshu Vashistha  +5 moreInstitutions (1)
Abstract: MicroRNAs are posttranscriptional gene regulators that are differentially expressed during various diseases and have been implicated in the underlying pathogenesis. We report here that miR-199a is acutely downregulated in cardiac myocytes on a decline in oxygen tension. This reduction is required for the rapid upregulation of its target, hypoxia-inducible factor (Hif)-1alpha. Replenishing miR-199a during hypoxia inhibits Hif-1alpha expression and its stabilization of p53 and, thus, reduces apoptosis. On the other hand, knockdown of miR-199a during normoxia results in the upregulation of Hif-1alpha and Sirtuin (Sirt)1 and reproduces hypoxia preconditioning. Sirt1 is also a direct target of miR-199a and is responsible for downregulating prolyl hydroxylase 2, required for stabilization of Hif-1alpha. Thus, we conclude that miR-199a is a master regulator of a hypoxia-triggered pathway and can be exploited for preconditioning cells against hypoxic damage. In addition, the data demonstrate a functional link between 2 key molecules that regulate hypoxia preconditioning and longevity.

... read more

Topics: Sirtuin 1 (57%), Hypoxia-inducible factors (55%), Sirtuin (54%) ... read more

544 Citations


Open accessJournal ArticleDOI: 10.1074/JBC.M206324200
Abstract: The transcriptional coactivator PPARγ coactivator-1α (PGC-1α) has been characterized as a broad regulator of cellular energy metabolism. Although PGC-1α functions through many transcription factors, the PGC-1α partners identified to date are unlikely to account for all of its biologic actions. The orphan nuclear receptor estrogen-related receptor α (ERRα) was identified in a yeast two-hybrid screen of a cardiac cDNA library as a novel PGC-1α-binding protein. ERRα was implicated previously in regulating the gene encoding medium-chain acyl-CoA dehydrogenase (MCAD), which catalyzes the initial step in mitochondrial fatty acid oxidation. The cardiac perinatal expression pattern of ERRα paralleled that of PGC-1α and MCAD. Adenoviral-mediated ERRα overexpression in primary neonatal cardiac mycoytes induced endogenous MCAD expression. Furthermore, PGC-1α enhanced the transactivation of reporter plasmids containing an estrogen response element or the MCAD gene promoter by ERRα and the related isoform ERRγ. In vitro binding experiments demonstrated that ERRα interacts with PGC-1α via its activation function-2 homology region. Mutagenesis studies revealed that the LXXLL motif at amino acid position 142–146 of PGC-1α (L2), necessary for PGC-1α interactions with other nuclear receptors, is not required for the PGC-1α·ERRα interaction. Rather, ERRα binds PGC-1α primarily through a Leu-rich motif at amino acids 209–213 (Leu-3) and utilizes additional LXXLL-containing domains as accessory binding sites. Thus, the PGC-1α·ERRα interaction is distinct from that of other nuclear receptor PGC-1α partners, including PPARα, hepatocyte nuclear factor-4α, and estrogen receptor α. These results identify ERRα and ERRγ as novel PGC-1α interacting proteins, implicate ERR isoforms in the regulation of mitochondrial energy metabolism, and suggest a potential mechanism whereby PGC-1α selectively binds transcription factor partners.

... read more

Topics: Estrogen-related receptor alpha (69%), Estrogen-related receptor (58%), Nuclear receptor (58%) ... read more

420 Citations


Open accessJournal ArticleDOI: 10.1128/MCB.24.20.9079-9091.2004
Abstract: Estrogen-related receptors (ERRs) are orphan nuclear receptors activated by the transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a critical regulator of cellular energy metabolism. However, metabolic target genes downstream of ERRα have not been well defined. To identify ERRα-regulated pathways in tissues with high energy demand such as the heart, gene expression profiling was performed with primary neonatal cardiac myocytes overexpressing ERRα. ERRα upregulated a subset of PGC-1α target genes involved in multiple energy production pathways, including cellular fatty acid transport, mitochondrial and peroxisomal fatty acid oxidation, and mitochondrial respiration. These results were validated by independent analyses in cardiac myocytes, C2C12 myotubes, and cardiac and skeletal muscle of ERRα−/− mice. Consistent with the gene expression results, ERRα increased myocyte lipid accumulation and fatty acid oxidation rates. Many of the genes regulated by ERRα are known targets for the nuclear receptor PPARα, and therefore, the interaction between these regulatory pathways was explored. ERRα activated PPARα gene expression via direct binding of ERRα to the PPARα gene promoter. Furthermore, in fibroblasts null for PPARα and ERRα, the ability of ERRα to activate several PPARα targets and to increase cellular fatty acid oxidation rates was abolished. PGC-1α was also shown to activate ERRα gene expression. We conclude that ERRα serves as a critical nodal point in the regulatory circuitry downstream of PGC-1α to direct the transcription of genes involved in mitochondrial energy-producing pathways in cardiac and skeletal muscle.

... read more

414 Citations


Journal ArticleDOI: 10.1038/S41569-018-0007-Y
Abstract: Cardiomyocytes exit the cell cycle and become terminally differentiated soon after birth. Therefore, in the adult heart, instead of an increase in cardiomyocyte number, individual cardiomyocytes increase in size, and the heart develops hypertrophy to reduce ventricular wall stress and maintain function and efficiency in response to an increased workload. There are two types of hypertrophy: physiological and pathological. Hypertrophy initially develops as an adaptive response to physiological and pathological stimuli, but pathological hypertrophy generally progresses to heart failure. Each form of hypertrophy is regulated by distinct cellular signalling pathways. In the past decade, a growing number of studies have suggested that previously unrecognized mechanisms, including cellular metabolism, proliferation, non-coding RNAs, immune responses, translational regulation, and epigenetic modifications, positively or negatively regulate cardiac hypertrophy. In this Review, we summarize the underlying molecular mechanisms of physiological and pathological hypertrophy, with a particular emphasis on the role of metabolic remodelling in both forms of cardiac hypertrophy, and we discuss how the current knowledge on cardiac hypertrophy can be applied to develop novel therapeutic strategies to prevent or reverse pathological hypertrophy.

... read more

Topics: Muscle hypertrophy (60%), Heart metabolism (55%)

401 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20217
20111