scispace - formally typeset
Journal ArticleDOI

Agricultural soils as a sink to mitigate CO2 emissions

Reads0
Chats0
TLDR
The most appropriate management practices to increase soil carbon sink capacity vary regionally, dependent on both environmental and socioeconomic factors as discussed by the authors. But, effective mitigation policies will not be based on any single ‘magic bullet’ solutions, but rather on many modest reductions which are economically efficient and which confer additional benefits to society.
Abstract
. Agricultural soils, having been depleted of much of their native carbon stocks, have a significant CO2 sink capacity. Global estimates of this sink capacity are in the order of 20-30 Pg C over the next 50-100 years. Management practices to build up soil C must increase the input of organic matter to soil and/or decrease soil organic matter decomposition rates. The most appropriate management practices to increase soil C vary regionally, dependent on both environmental and socioeconomic factors. In temperate regions, key strategies involve increasing cropping frequency and reducing bare fallow, increasing the use of perennial forages (including N-fixing species) in crop rotations, retaining crop residues and reducing or eliminating tillage (i.e. no-till). In North America and Europe, conversion of marginal arable land to permanent perennial vegetation, to protect fragile soils and landscapes and/or reduce agricultural surpluses, provides additional opportunities for C sequestration. In the tropics, increasing C inputs to soil through improving the fertility and productivity of cropland and pastures is essential. In extensive systems with vegetated fallow periods (e.g. shifting cultivation), planted fallows and cover crops can increase C levels over the cropping cycle. Use of no-till, green manures and agroforestry are other beneficial practices. Overall, improving the productivity and sustainability of existing agricultural lands is crucial to help reduce the rate of new land clearing, from which large amounts of CO2 from biomass and soil are emitted to the atmosphere. Some regional analyses of soil C sequestration and sequestration potential have been performed, mainly for temperate industrialized countries. More are needed, especially for the tropics, to capture region-specific interactions between climate, soil and management resources that are lost in global level assessments. By itself, C sequestration in agricultural soils can make only modest contributions (e.g. 3-6% of total fossil C emissions) to mitigating greenhouse gas emissions. However, effective mitigation policies will not be based on any single ‘magic bullet’ solutions, but rather on many modest reductions which are economically efficient and which confer additional benefits to society. In this context, soil C sequestration is a significant mitigation option. Additional advantages of pursuing strategies to increase soil C are the added benefits of improved soil quality for improving agricultural productivity and sustainability.

read more

Citations
More filters
Journal ArticleDOI

Soil carbon sequestration to mitigate climate change

TL;DR: In this article, the authors proposed a sustainable management of soil organic carbon (SOC) pool through conservation tillage with cover crops and crop residue mulch, nutrient cycling including the use of compost and manure, and other management practices.
Journal ArticleDOI

Soil organic carbon sequestration rates by tillage and crop rotation : A global data analysis

TL;DR: In this article, the authors quantify potential soil organic carbon sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur.
Journal ArticleDOI

Climate-smart soils

TL;DR: ‘state of the art’ soil greenhouse gas research is highlighted, mitigation practices and potentials are summarized, gaps in data and understanding are identified and ways to close such gaps are suggested through new research, technology and collaboration.
Journal ArticleDOI

Soil carbon 4 per mille

TL;DR: In this paper, the authors surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia).
Journal ArticleDOI

Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis

TL;DR: In this paper, a global meta-analysis of 385 studies on land-use change in the tropics were explored to estimate the organic carbon (SOC) stock changes for all major land use change types.
References
More filters
Journal ArticleDOI

Analysis of factors controlling soil organic matter levels in Great Plains grasslands

TL;DR: In this article, a model of soil organic matter (SOM) quantity and composition was used to simulate steady-state organic matter levels for 24 grassland locations in the U.S. Great Plains.
Journal ArticleDOI

Carbon pools and flux of global forest ecosystems.

TL;DR: Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon.
Journal ArticleDOI

Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics

TL;DR: The effects of initial nitrogen and lignin contents of six species of hardwood leaves on their decomposition dynamics were studied at the Hubbard Brook Experimental Forest by inverse linear relationships between the percentage of original mass remaining and the nitrogen concentration in the residual material.
Journal ArticleDOI

Soil carbon pools and world life zones

TL;DR: In this article, an analysis of 2,700 soil profiles, organized on a climate basis using the Holdridge life-zone classification system, indicates relationships between soil carbon density and climate, a major soil forming factor.
Related Papers (5)