scispace - formally typeset
Open AccessJournal ArticleDOI

Soil carbon 4 per mille

TLDR
In this paper, the authors surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia).
About
This article is published in Geoderma.The article was published on 2017-04-15 and is currently open access. It has received 1171 citations till now. The article focuses on the topics: Soil carbon & Soil organic matter.

read more

Citations
More filters
Journal ArticleDOI

The technological and economic prospects for CO2 utilization and removal

TL;DR: The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere, but barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways.

Impacts of 1.5°C Global Warming on Natural and Human Systems

Ove Hoegh-Guldberg, +86 more
TL;DR: In this article, the authors present a survey of women's sportswriters in South Africa and Ivory Coast, including: Marco Bindi (Italy), Sally Brown (UK), Ines Camilloni (Argentina), Arona Diedhiou (Ivory Coast/Senegal), Riyanti Djalante (Japan/Indonesia), Kristie L. Ebi (USA), Francois Engelbrecht (South Africa), Joel Guiot (France), Yasuaki Hijioka (Japan), Shagun Mehrotra (USA/India), Ant
Journal ArticleDOI

The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls

TL;DR: This analysis suggests root inputs are approximately five times more likely than an equivalent mass of aboveground litter to be stabilized as SOM, and that fungi and bacteria, and soil faunal food webs, and mineral associations drive stabilization at depths greater than ∼30 cm.
Journal ArticleDOI

Soil and the intensification of agriculture for global food security.

TL;DR: The concept of the Water-Food-Energy nexus must be expanded, forming the Water/Soil/Energy nexus, because ongoing soil degradation is decreasing the long-term ability of soils to provide humans with services, including future food production, and is causing environmental harm.
References
More filters
Journal ArticleDOI

Soil carbon sequestration impacts on global climate change and food security.

TL;DR: In this article, the carbon sink capacity of the world’s agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon.
Journal ArticleDOI

Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils

TL;DR: The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models as discussed by the authors.
Journal ArticleDOI

Total carbon and nitrogen in the soils of the world

TL;DR: In this article, a discrepancy of approximately 350 × 1015 g (or Pg) of C in two recent estimates of soil carbon reserves worldwide is evaluated using the geo-referenced database developed for the World Inventory of Soil Emission Potentials (WISE) project.
Journal ArticleDOI

Greenhouse-gas emission targets for limiting global warming to 2 °C

TL;DR: A comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000–50 period that would limit warming throughout the twenty-first century to below 2 °C, based on a combination of published distributions of climate system properties and observational constraints is provided.
Related Papers (5)