scispace - formally typeset
Journal ArticleDOI

Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli.

Reads0
Chats0
TLDR
The combined results suggested that SNPs may damage the structure of bacterial cell membrane and depress the activity of some membranous enzymes, which cause E. coli bacteria to die eventually.
Abstract
The antibacterial activity and acting mechanism of silver nanoparticles (SNPs) on Escherichia coli ATCC 8739 were investigated in this study by analyzing the growth, permeability, and morphology of the bacterial cells following treatment with SNPs. The experimental results indicated 10 microg/ml SNPs could completely inhibit the growth of 10(7) cfu/ml E. coli cells in liquid Mueller-Hinton medium. Meanwhile, SNPs resulted in the leakage of reducing sugars and proteins and induced the respiratory chain dehydrogenases into inactive state, suggesting that SNPs were able to destroy the permeability of the bacterial membranes. When the cells of E. coli were exposed to 50 microg/ml SNPs, many pits and gaps were observed in bacterial cells by transmission electron microscopy and scanning electron microscopy, and the cell membrane was fragmentary, indicating the bacterial cells were damaged severely. After being exposed to 10 microg/ml SNPs, the membrane vesicles were dissolved and dispersed, and their membrane components became disorganized and scattered from their original ordered and close arrangement based on TEM observation. In conclusion, the combined results suggested that SNPs may damage the structure of bacterial cell membrane and depress the activity of some membranous enzymes, which cause E. coli bacteria to die eventually.

read more

Citations
More filters
Journal ArticleDOI

Antimicrobial activity of metals: mechanisms, molecular targets and applications

TL;DR: The chemical and toxicological principles that underlie the antimicrobial activity of metals are described and the preferences of metal atoms for specific microbial targets are discussed.
Journal ArticleDOI

Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches

TL;DR: This review extensively discusses the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral,Anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti- cancer activity of Ag NPs.
Journal ArticleDOI

Synthesis of metallic nanoparticles using plant extracts.

TL;DR: The methods of making nanoparticles using plant extracts are reviewed, methods of particle characterization are reviewed and potential applications of the particles in medicine are discussed.
Journal ArticleDOI

Polymeric materials with antimicrobial activity

TL;DR: The state of the art in the field of antimicrobial polymeric systems during the last decade is described in this paper, where a classification of the different materials is carried out dividing basically those synthetic polymers that exhibit antimicrobial activity by themselves; those whose biocidal activity is conferred through their chemical modification; those that incorporate antimicrobial organic compounds with either low or high molecular weight; and those that involve the addition of active inorganic systems.
Journal ArticleDOI

Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity

TL;DR: This overview incorporates a retrospective of previous reviews published from 2007 to 2013 and recent original contributions on the progress of research on antimicrobial mechanisms to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles.
References
More filters
Journal ArticleDOI

Bacterial silver resistance: molecular biology and uses and misuses of silver compounds

TL;DR: Resistance to silver compounds as determined by bacterial plasmids and genes has been defined by molecular genetics and the use of molecular epidemiological tools will establish the range and diversity of such resistance systems in clinical and non-clinical sources.
Journal ArticleDOI

The study of antimicrobial activity and preservative effects of nanosilver ingredient

TL;DR: In this paper, the antimicrobial activity of silver nanoparticles and platinum nanoparticles (Pt-NPs) aqueous solution, which were prepared using different stabilizer, such as sodium dodecylsulfate (SDS) and poly-(N-vinyl-2-pyrrolidone) (PVP), for Staphylococcus aureus and Escherichia coli (E.coli) was investigated using cup diffusion method.
Journal ArticleDOI

An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement.

TL;DR: This new form of silver called NanoSilver was free of in vitro cytotoxicity and showed high effectiveness against multiresistant bacteria and may have a high interest in joint arthroplasty.
Journal ArticleDOI

Synthesis and antibacterial properties of silver nanoparticles.

TL;DR: The silver nanoparticles synthesized by inert gas condensation and co-condensation techniques were found to exhibit antibacterial effects at low concentrations and the antibacterial properties were related to the total surface area of the nanoparticles.
Journal ArticleDOI

Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio cholerae

TL;DR: It is shown that low concentrations of Ag+ induce a massive proton leakage through the Vibrio cholerae membrane, which results in complete deenergization and, with a high degree of probability, cell death.
Related Papers (5)