scispace - formally typeset
Journal ArticleDOI

Band gap fluorescence from individual single-walled carbon nanotubes.

TLDR
At pH less than 5, the absorption and emission spectra of individual nanotubes show evidence of band gap–selective protonation of the side walls of the tube, which is readily reversed by treatment with base or ultraviolet light.
Abstract
Fluorescence has been observed directly across the band gap of semiconducting carbon nanotubes. We obtained individual nanotubes, each encased in a cylindrical micelle, by ultrasonically agitating an aqueous dispersion of raw single-walled carbon nanotubes in sodium dodecyl sulfate and then centrifuging to remove tube bundles, ropes, and residual catalyst. Aggregation of nanotubes into bundles otherwise quenches the fluorescence through interactions with metallic tubes and substantially broadens the absorption spectra. At pH less than 5, the absorption and emission spectra of individual nanotubes show evidence of band gap-selective protonation of the side walls of the tube. This protonation is readily reversed by treatment with base or ultraviolet light.

read more

Citations
More filters
Journal ArticleDOI

Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives

TL;DR: This manuscript reviews the development and application of nanoparticles and their future potential to advance current and emerging clinical bioimaging techniques, with a focus on solid, phase-separated materials, for example metals and metal oxides.
Journal ArticleDOI

Carbon-Nanotube-Based Thermoelectric Materials and Devices.

TL;DR: Progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoeLECTric devices prepared from these materials is reviewed in detail, illuminates the tremendous potential that carbon-nanotubes-based materials and composites have for producing high-performance next-generation devices for thermoelectedric-energy harvesting.
Journal ArticleDOI

Debundling and dissolution of single-walled carbon nanotubes in amide solvents.

TL;DR: Wet chemical methods involving ultrasound and amide solvents were used to purify and separate large bundles of single-walled carbon nanotubes into individual nanot tubes that could then be transported to silicon or mica substrates to remove amorphous carbon.
Journal ArticleDOI

Beyond Förster resonance energy transfer in biological and nanoscale systems.

TL;DR: Various ways that electronic energy transfer is promoted by mechanisms beyond those explicitly considered in Forster RET theory are considered.
Journal ArticleDOI

Carbon nanofibers and carbon nanotubes in regenerative medicine.

TL;DR: A review of the latest applications of carbon nanofibers and carbon nanotubes in regenerative medicine can be found in this article, where the authors focus on the application of carbon carbon nanostructures in the field of bio-inspired medicine.
References
More filters
Journal ArticleDOI

CHARMM: A program for macromolecular energy, minimization, and dynamics calculations

TL;DR: The CHARMM (Chemistry at Harvard Macromolecular Mechanics) as discussed by the authors is a computer program that uses empirical energy functions to model macromolescular systems, and it can read or model build structures, energy minimize them by first- or second-derivative techniques, perform a normal mode or molecular dynamics simulation, and analyze the structural, equilibrium, and dynamic properties determined in these calculations.
Journal ArticleDOI

MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures

TL;DR: The MOLSCRIPT program as discussed by the authors produces plots of protein structures using several different kinds of representations, including simple wire models, ball-and-stick models, CPK models and text labels.
Journal ArticleDOI

Crystalline Ropes of Metallic Carbon Nanotubes

TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Book

Science of fullerenes and carbon nanotubes

TL;DR: In this paper, the authors present a detailed overview of the properties of Fullerenes and their properties in surface science applications, such as scanning tunnel microscopy, growth and fragmentation studies, and chemical synthesis.
Journal ArticleDOI

Constant pressure molecular dynamics simulation: The Langevin piston method

TL;DR: In this paper, a new method for performing molecular dynamics simulations under constant pressure is presented, which is based on the extended system formalism introduced by Andersen, the deterministic equations of motion for the piston degree of freedom are replaced by a Langevin equation; a suitable choice of collision frequency then eliminates the unphysical "ringing" of the volume associated with the piston mass.
Related Papers (5)