scispace - formally typeset
Open AccessJournal ArticleDOI

Base editing: precision chemistry on the genome and transcriptome of living cells

Reads0
Chats0
TLDR
A comprehensive account of the state of the art of base editing of DNA and RNA is provided, including the progressive improvements to methodologies, understanding and avoiding unintended edits, cellular and organismal delivery of editing reagents and diverse applications in research and therapeutic settings.
Abstract
RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors

TL;DR: This work analyzes key considerations when choosing genome editing agents and identifies opportunities for future improvements and applications in basic research and therapeutics.
Journal ArticleDOI

Adeno-associated virus vector as a platform for gene therapy delivery

TL;DR: The fundamentals of AAV and vectorology are discussed, focusing on current therapeutic strategies, clinical progress and ongoing challenges.

Therapeutic genome editing: prospects and challenges

TL;DR: Current progress toward developing programmable nuclease–based therapies as well as future prospects and challenges are discussed.
Journal ArticleDOI

The expanding regulatory mechanisms and cellular functions of circular RNAs.

TL;DR: Recent studies have shed new light on the biogenesis and functions of circular RNAs, which include the modulation of transcription and splicing, and interference with microRNAs and other cellular signalling pathways.
References
More filters
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Journal ArticleDOI

Genome engineering using the CRISPR-Cas9 system

TL;DR: A set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies are described.
Journal ArticleDOI

RNA-Guided Human Genome Engineering via Cas9

TL;DR: The type II bacterial CRISPR system is engineer to function with custom guide RNA (gRNA) in human cells to establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.
Related Papers (5)