scispace - formally typeset
Open AccessJournal ArticleDOI

Base-excision repair of oxidative DNA damage

Reads0
Chats0
TLDR
The properties of other guanine oxidation products and the associated DNA glycosylases that remove them are now also being revealed.
Abstract
Maintaining the chemical integrity of DNA in the face of assault by oxidizing agents is a constant challenge for living organisms. Base-excision repair has an important role in preventing mutations associated with a common product of oxidative damage to DNA, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine DNA glycosylases use an intricate series of steps to locate and excise 8-oxoguanine lesions efficiently against a high background of undamaged bases. The importance of preventing mutations associated with 8-oxoguanine is shown by a direct association between defects in the DNA glycosylase MUTYH and colorectal cancer. The properties of other guanine oxidation products and the associated DNA glycosylases that remove them are now also being revealed.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The DNA-damage response in human biology and disease

TL;DR: The authors' improving understanding of DNA-damage responses is providing new avenues for disease management, and these responses are biologically significant because they prevent diverse human diseases.
Journal ArticleDOI

The DNA Damage Response: Making It Safe to Play with Knives

TL;DR: This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals.
Journal ArticleDOI

Redox Regulation of Cell Survival

TL;DR: The current understanding of how disturbance in redox homeostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative disorders is reviewed and the basic knowledge on redox regulation of cell survival can be used to develop strategies for the treatment or prevention of those diseases.
Journal ArticleDOI

The DNA damage response and cancer therapy

TL;DR: A better understanding of the cellular response to DNA damage will not only inform the knowledge of cancer development but also help to refine the classification as well as the treatment of the disease.
Journal ArticleDOI

NRF2 and the Hallmarks of Cancer.

TL;DR: The roles of NRF2 in the hallmarks of cancer are explored, indicating both tumor suppressive and tumor-promoting effects.
References
More filters
Journal ArticleDOI

Instability and decay of the primary structure of DNA

TL;DR: The spontaneous decay of DNA is likely to be a major factor in mutagenesis, carcinogenesis and ageing, and also sets limits for the recovery of DNA fragments from fossils.
Journal ArticleDOI

Lessons from Hereditary Colorectal Cancer

TL;DR: The authors are grateful to the members of their laboratories for their contributions to the reviewed studies and to F. Giardiello and S. Hamilton for photographs of colorectal lesions.
Journal ArticleDOI

Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG.

TL;DR: DCMP and dAMP are incorporated selectively opposite 8-oxodG with transient inhibition of chain extension occurring 3' to the modified base, and the potentially mutagenic insertion of dAMP is targeted exclusively to the site of the lesion.
Journal ArticleDOI

The Role of Oxidative Stress in Carcinogenesis

TL;DR: This review examines the evidence of cellular oxidants' involvement in the carcinogenesis process, and focuses on the mechanisms for production, cellular damage produced, and the role of signaling cascades by reactive oxygen species.
Related Papers (5)