scispace - formally typeset
Journal ArticleDOI

Cardiac Chamber Formation: Development, Genes, and Evolution

Antoon F.M. Moorman, +1 more
- 01 Oct 2003 - 
- Vol. 83, Iss: 4, pp 1223-1267
TLDR
The topographical arrangement of the distinct cardiac muscle cells in the forming heart explains the embryonic electrocardiogram (ECG), does not require the invention of nodes, and allows a logical transition from a peristaltic tubular heart to a synchronously contracting four-chambered heart.
Abstract
Concepts of cardiac development have greatly influenced the description of the formation of the four-chambered vertebrate heart. Traditionally, the embryonic tubular heart is considered to be a composite of serially arranged segments representing adult cardiac compartments. Conversion of such a serial arrangement into the parallel arrangement of the mammalian heart is difficult to understand. Logical integration of the development of the cardiac conduction system into the serial concept has remained puzzling as well. Therefore, the current description needed reconsideration, and we decided to evaluate the essentialities of cardiac design, its evolutionary and embryonic development, and the molecular pathways recruited to make the four-chambered mammalian heart. The three principal notions taken into consideration are as follows. 1) Both the ancestor chordate heart and the embryonic tubular heart of higher vertebrates consist of poorly developed and poorly coupled "pacemaker-like" cardiac muscle cells with the highest pacemaker activity at the venous pole, causing unidirectional peristaltic contraction waves. 2) From this heart tube, ventricular chambers differentiate ventrally and atrial chambers dorsally. The developing chambers display high proliferative activity and consist of structurally well-developed and well-coupled muscle cells with low pacemaker activity, which permits fast conduction of the impulse and efficacious contraction. The forming chambers remain flanked by slowly proliferating pacemaker-like myocardium that is temporally prevented from differentiating into chamber myocardium. 3) The trabecular myocardium proliferates slowly, consists of structurally poorly developed, but well-coupled, cells and contributes to the ventricular conduction system. The atrial and ventricular chambers of the formed heart are activated and interconnected by derivatives of embryonic myocardium. The topographical arrangement of the distinct cardiac muscle cells in the forming heart explains the embryonic electrocardiogram (ECG), does not require the invention of nodes, and allows a logical transition from a peristaltic tubular heart to a synchronously contracting four-chambered heart. This view on the development of cardiac design unfolds fascinating possibilities for future research.

read more

Citations
More filters
Journal ArticleDOI

Cardiac fibroblasts: at the heart of myocardial remodeling.

TL;DR: Insight is provided into the properties of cardiac fibroblasts that underscores their importance in the remodeling heart, including their origin, electrophysiological properties, role in matrix metabolism, functional responses to environmental stimuli and ability to secrete bioactive molecules.
Journal ArticleDOI

Gene regulatory networks in the evolution and development of the heart

TL;DR: The consequences of mutations in components of the cardiac gene network cause congenital heart disease, the most common human birth defect, and the logic of organogenesis and the evolutionary origins of morphological complexity are revealed.
Journal ArticleDOI

Cardiac fibroblast: the renaissance cell.

TL;DR: Insight is provided into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart.
Journal ArticleDOI

Genesis and Regulation of the Heart Automaticity

TL;DR: Evidence on the functional role of different families of ion channels in cardiac pacemaking is discussed and recent results obtained on genetically engineered mouse strains displaying dysfunction in heart automaticity are reviewed.
References
More filters
Journal ArticleDOI

A series of normal stages in the development of the chick embryo

TL;DR: The preparation of a series of normal stages of the chick embryo does not need justification at a time when chick ernbryos are not only widely used in descriptive and experimental embryology but are proving to be increasingly valuable in medical research, as in work on viruses and cancer.
Journal ArticleDOI

Handbook of Physiology.

Fred Plum
- 01 Mar 1960 - 
TL;DR: This is the first volume of the proposed many-sectioned "Handbook" in which the American Physiological Society intends to present comprehensively the entire field of physiology.
Journal ArticleDOI

A series of normal stages in the development of the chick embryo

TL;DR: In this article, a series of normal stages of the chick embryo is described in terms of the length of time of incubation, except for the first three days during which more detailed characteristics such as the number of somites are applied.
Book ChapterDOI

The Cardiovascular System

Related Papers (5)