scispace - formally typeset
Open AccessJournal ArticleDOI

Cavity opto-mechanics using an optically levitated nanosphere

Reads0
Chats0
TLDR
A novel approach is proposed, in which optically levitating a nano-mechanical system can greatly reduce its thermal contact, while simultaneously eliminating dissipation arising from clamping, which potentially opens the door to ground-state cooling and coherent manipulation of a single mesoscopic mechanical system or entanglement generation between spatially separate systems, even in room-temperature environments.
Abstract
Recently, remarkable advances have been made in coupling a number of high-Q modes of nano-mechanical systems to high-finesse optical cavities, with the goal of reaching regimes in which quantum behavior can be observed and leveraged toward new applications. To reach this regime, the coupling between these systems and their thermal environments must be minimized. Here we propose a novel approach to this problem, in which optically levitating a nano-mechanical system can greatly reduce its thermal contact, while simultaneously eliminating dissipation arising from clamping. Through the long coherence times allowed, this approach potentially opens the door to ground-state cooling and coherent manipulation of a single mesoscopic mechanical system or entanglement generation between spatially separate systems, even in room-temperature environments. As an example, we show that these goals should be achievable when the mechanical mode consists of the center-of-mass motion of a levitated nanosphere.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Cavity Optomechanics

TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Journal ArticleDOI

Models of Wave-function Collapse, Underlying Theories, and Experimental Tests

TL;DR: In this article, a review is given of an experimentally falsifiable phenomenological proposal, known as continuous spontaneous collapse, which is a stochastic nonlinear modification of the Schrodinger equation.
Journal ArticleDOI

Optical trapping and manipulation of nanostructures

TL;DR: The state-of-the-art in optical trapping at the nanoscale is reviewed, with an emphasis on some of the most promising advances, such as controlled manipulation and assembly of individual and multiple nanostructures, force measurement with femtonewton resolution, and biosensors.
Journal ArticleDOI

Shaping the future of manipulation

TL;DR: In this paper, the authors summarized the impact and emerging applications of shaped light in the field of optical manipulation, particularly in the fields of physics, biology, and soft condensed matter.
Journal ArticleDOI

Measurement of the Instantaneous Velocity of a Brownian Particle

TL;DR: A single, optically trapped silica bead is used to probe the dynamics of Brownian motion, measuring the predicted instantaneous velocity of the particle and verifying the short-time-scale behavior predicted a century ago, providing direct verification of the energy equipartition theorem for a Brownian particle.
References
More filters
Journal ArticleDOI

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

TL;DR: Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that one is led to conclude that the description of reality as given by a wave function is not complete.
Journal ArticleDOI

Non-Adiabatic Crossing of Energy Levels

TL;DR: In this paper, the crossing of a polar and homopolar state of a molecule with stationary nuclei has been studied, and the essential features may be illustrated in the crossing.
Proceedings Article

Optical microcavities

TL;DR: In quantum optical devices, microcavities can coax atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible.
Journal ArticleDOI

Quantum dynamics of single trapped ions

TL;DR: Theoretical and experimental work on radio-frequency (Paul) traps is reviewed in this paper, with a focus on ions trapped in radiofrequency traps, which are ideal for quantum-optical and quantum-dynamical studies under well controlled conditions.
Journal ArticleDOI

Quantum state transfer and entanglement distribution among distant nodes in a quantum network

TL;DR: In this paper, a scheme to utilize photons for ideal quantum transmission between atoms located at spatially separated nodes of a quantum network was proposed, which employs special laser pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wave packet that will enter a cavity at receiving node and be absorbed by an atom there with unit probability.
Related Papers (5)