scispace - formally typeset
Open AccessJournal ArticleDOI

Comparison of multiple Amber force fields and development of improved protein backbone parameters.

TLDR
An effort to improve the φ/ψ dihedral terms in the ff99 energy function achieves a better balance of secondary structure elements as judged by improved distribution of backbone dihedrals for glycine and alanine with respect to PDB survey data.
Abstract
The ff94 force field that is commonly associated with the Amber simulation package is one of the most widely used parameter sets for biomolecular simulation. After a decade of extensive use and testing, limitations in this force field, such as over-stabilization of alpha-helices, were reported by us and other researchers. This led to a number of attempts to improve these parameters, resulting in a variety of "Amber" force fields and significant difficulty in determining which should be used for a particular application. We show that several of these continue to suffer from inadequate balance between different secondary structure elements. In addition, the approach used in most of these studies neglected to account for the existence in Amber of two sets of backbone phi/psi dihedral terms. This led to parameter sets that provide unreasonable conformational preferences for glycine. We report here an effort to improve the phi/psi dihedral terms in the ff99 energy function. Dihedral term parameters are based on fitting the energies of multiple conformations of glycine and alanine tetrapeptides from high level ab initio quantum mechanical calculations. The new parameters for backbone dihedrals replace those in the existing ff99 force field. This parameter set, which we denote ff99SB, achieves a better balance of secondary structure elements as judged by improved distribution of backbone dihedrals for glycine and alanine with respect to PDB survey data. It also accomplishes improved agreement with published experimental data for conformational preferences of short alanine peptides and better accord with experimental NMR relaxation data of test protein systems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB

TL;DR: Together, these backbone and side chain modifications (hereafter called ff14SB) not only better reproduced their benchmarks, but also improved secondary structure content in small peptides and reproduction of NMR χ1 scalar coupling measurements for proteins in solution.
Journal ArticleDOI

Improved side‐chain torsion potentials for the Amber ff99SB protein force field

TL;DR: A new force field, which is termed Amber ff99SB‐ILDN, exhibits considerably better agreement with the NMR data and is validated against a large set of experimental NMR measurements that directly probe side‐chain conformations.
Journal ArticleDOI

Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles.

TL;DR: The results indicate that the revised CHARMM 36 parameters represent an improved model for the modeling and simulation studies of proteins, including studies of protein folding, assembly and functionally relevant conformational changes.
Journal ArticleDOI

g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.

TL;DR: A new tool, g_mmpbsa, which implements the MM-PBSA approach using subroutines written in-house or sourced from the GROMACS and APBS packages is described, and the calculated interaction energy of 37 structurally diverse HIV-1 protease inhibitor complexes is compared.
References
More filters
Journal ArticleDOI

Comparison of simple potential functions for simulating liquid water

TL;DR: In this article, the authors compared the Bernal Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P potential functions for liquid water in the NPT ensemble at 25°C and 1 atm.
Journal ArticleDOI

Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems

TL;DR: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms.
Journal ArticleDOI

Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids

TL;DR: In this article, the parametrization and testing of the OPLS all-atom force field for organic molecules and peptides are described, and the parameters for both torsional and non-bonded energy properties have been derived, while the bond stretching and angle bending parameters have been adopted mostly from the AMBER force field.
Journal ArticleDOI

The Amber biomolecular simulation programs

TL;DR: The development, current features, and some directions for future development of the Amber package of computer programs, which contains a group of programs embodying a number of powerful tools of modern computational chemistry, focused on molecular dynamics and free energy calculations of proteins, nucleic acids, and carbohydrates.
Related Papers (5)