scispace - formally typeset
Open AccessJournal ArticleDOI

Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development

Reads0
Chats0
TLDR
It is argued that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons toward the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.
Abstract
There is a basic rule to mammalian neocortical expansion: as it expands, so does it fold. The degree to which it folds, however, cannot strictly be attributed to its expansion. Across species, cortical volume does not keep pace with cortical surface area, but rather folds appear more rapidly than expected. As a result, larger brains quickly become disproportionately more convoluted than smaller brains. Both the absence (lissencephaly) and presence (gyrencephaly) of cortical folds is observed in all mammalian orders and, while there is likely some phylogenetic signature to the evolutionary appearance of gyri and sulci, there are undoubtedly universal trends to the acquisition of folds in an expanding neocortex. Whether these trends are governed by conical expansion of neocortical germinal zones, the distribution of cortical connectivity, or a combination of growth- and connectivity-driven forces remains an open question. But the importance of cortical folding for evolution of the uniquely mammalian neocortex, as well as for the incidence of neuropathologies in humans, is undisputed. In this hypothesis and theory article, we will summarize the development of cortical folds in the neocortex, consider the relative influence of growth- versus connectivity-driven forces for the acquisition of cortical folds between and within species, assess the genetic, cell-biological, and mechanistic implications for neocortical expansion, and discuss the significance of these implications for human evolution, development, and disease. We will argue that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons towards the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Molecular Identity of Human Outer Radial Glia during Cortical Development

TL;DR: It is suggested that outer radial glia directly support the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby enabling the developmental and evolutionary expansion of the human neocortex.
Journal ArticleDOI

Neural progenitors, neurogenesis and the evolution of the neocortex

TL;DR: The diversity of neocortical neural progenitors, their interspecies variations and their roles in determining the evolutionary increase in neuron numbers and neocortex size are reviewed.
Journal ArticleDOI

A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex

TL;DR: The screening and characterization approach provides a blueprint for understanding the development of the human prefrontal cortex in the early and mid-gestational stages in order to systematically dissect the cellular basis and molecular regulation of prefrontal cortex function in humans.
Journal ArticleDOI

Growth and folding of the mammalian cerebral cortex: from molecules to malformations

TL;DR: The size and extent of folding of the mammalian cerebral cortex are important factors that influence a species' cognitive abilities and sensorimotor skills and may lead to new medical treatments for certain disorders.
Journal ArticleDOI

Brain organoids: advances, applications and challenges.

TL;DR: Recent advances in the development of brain organoid methodologies are summarized and their potential applications as model systems for understanding disease states as well as normal brain development across species are highlighted.
References
More filters
Journal ArticleDOI

Fiji: an open-source platform for biological-image analysis

TL;DR: Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis that facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system.
Journal ArticleDOI

Inferring the historical patterns of biological evolution

TL;DR: The combination of these phylogenies with powerful new statistical approaches for the analysis of biological evolution is challenging widely held beliefs about the history and evolution of life on Earth.
Journal ArticleDOI

Specification of cerebral cortical areas

Pasko Rakic
- 08 Jul 1988 - 
TL;DR: The radial unit model provides a framework for understanding cerebral evolution, epigenetic regulation of the parcellation of cytoarchitectonic areas, and insight into the pathogenesis of certain cortical disorders in humans.
Journal ArticleDOI

The glial nature of embryonic and adult neural stem cells

TL;DR: The timing in development and location of NSCs, a property tightly linked to their neuroepithelial origin, appear to be the key determinants of the types of neurons generated.
Journal ArticleDOI

Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases

TL;DR: It is shown here that neurons are generated in two proliferative zones by distinct patterns of division, and newborn neurons do not migrate directly to the cortex; instead, most exhibit four distinct phases of migration, including a phase of retrograde movement toward the ventricle before migration to the cortical plate.
Related Papers (5)