scispace - formally typeset
Open AccessJournal ArticleDOI

Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests

Reads0
Chats0
TLDR
In this paper, a review of different dark energy cosmologies for different fluids is presented, and their properties are also explored, and special attention is paid to the equivalence of different models.
Abstract
We review different dark energy cosmologies. In particular, we present the ΛCDM cosmology, Little Rip and Pseudo-Rip universes, the phantom and quintessence cosmologies with Type I, II, III and IV finite-time future singularities and non-singular dark energy universes. In the first part, we explain the ΛCDM model and well-established observational tests which constrain the current cosmic acceleration. After that, we investigate the dark fluid universe where a fluid has quite general equation of state (EoS) [including inhomogeneous or imperfect EoS]. All the above dark energy cosmologies for different fluids are explicitly realized, and their properties are also explored. It is shown that all the above dark energy universes may mimic the ΛCDM model currently, consistent with the recent observational data. Furthermore, special attention is paid to the equivalence of different dark energy models. We consider single and multiple scalar field theories, tachyon scalar theory and holographic dark energy as models for current acceleration with the features of quintessence/phantom cosmology, and demonstrate their equivalence to the corresponding fluid descriptions. In the second part, we study another equivalent class of dark energy models which includes F(R) gravity as well as F(R) Hořava-Lifshitz gravity and the teleparallel f(T) gravity. The cosmology of such models representing the ΛCDM-like universe or the accelerating expansion with the quintessence/phantom nature is described. Finally, we approach the problem of testing dark energy and alternative gravity models to general relativity by cosmography. We show that degeneration among parameters can be removed by accurate data analysis of large data samples and also present the examples.

read more

Citations
More filters
Journal ArticleDOI

Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution

TL;DR: In this paper, the authors systematically review some standard issues and also the latest developments of modified gravity in cosmology, emphasizing on inflation, bouncing cosmology and late-time acceleration era.
Journal ArticleDOI

$f(R,T)$ gravity

TL;DR: In this article, the authors considered a modified theory of gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and of the trace of the stress-energy tensor.
Journal ArticleDOI

f(T) teleparallel gravity and cosmology

TL;DR: In this paper, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description.
Journal ArticleDOI

f(T) teleparallel gravity and cosmology

TL;DR: The role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description, and various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories are reviewed.
Journal ArticleDOI

Inflationary Cosmology in Modified Gravity Theories

Kazuharu Bamba, +1 more
- 02 Mar 2015 - 
TL;DR: In this article, the spectral index of scalar modes of the density perturbations and the tensor-to-scalar ratio can be consistent with the Planck results.
References
More filters
Related Papers (5)