scispace - formally typeset
Journal ArticleDOI

Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies

Reads0
Chats0
TLDR
In this article, the authors provide a guiding and comprehensive summary of the basic understanding and manufacturing ideas of the solid electrolyte for Zn-air and Al-air batteries, as well as challenges and prospects for the future development of alkaline solid electrolytes.
Abstract
Aqueous-based Zn–air and Al–air batteries are considered to be promising post-lithium energy storage technologies owing to their safety, environmental friendliness, affordability, and high energy density. Nevertheless, traditional liquid Zn–air and Al–air batteries have problems such as volatilization and leakage, as well as the realization of miniaturized, portable, and wearable electronic devices. The practice of optimizing the battery structure by replacing the flowing electrolyte with a solid type has emerged and made significant progress in the past ten years. Herein, this review provides a guiding and comprehensive summary of the basic understanding and manufacturing ideas of the solid electrolyte for Zn–air and Al–air batteries. First, two types of alkaline solid electrolytes are distinguished, including alkaline anion exchange membranes (AAEMs) and gel polymer electrolytes (GPEs). Then, three sorts of major framework materials (i.e., artificial organic polymer, biomass materials, and inorganic materials) are reviewed and discussed. Most importantly, the latest research progress and improvement strategies to enhance the electrolyte membrane performances involving conductivity, mechanical properties, and electrochemical stability are also highlighted. Finally, challenges and prospects for the future development of alkaline solid electrolytes are emphasized.

read more

Citations
More filters

An extremely safe and wearable solid state zinc ion battery

TL;DR: Wang et al. as mentioned in this paper won the Third Prize ( Category: Innovation) in the "Challenge Cup" National Competition -Hong Kong Regional Final, Hong Kong University Student Innovation and Entrepreneurship Competition 2017 organized by the Hong Kong New Generation Cultural Association.
Journal ArticleDOI

Roadmap on the protective strategies of zinc anodes in aqueous electrolyte

TL;DR: In this article, the fundamental reactions of Zn anodes in both alkaline and neutral electrolytes were elucidated in detail, including surface passivation, dendritic growth, hydrogen evolution, and shape change in the Zn stripping/plating procedure.
Journal ArticleDOI

Roadmap on the protective strategies of zinc anodes in aqueous electrolyte

TL;DR: In this article , the fundamental reactions of Zn anodes in both alkaline and neutral electrolytes were elucidated in detail, including surface passivation, dendritic growth, hydrogen evolution, and shape change in the Zn stripping/plating procedure.
Journal ArticleDOI

All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries

TL;DR: In this article, a membrane-free acid-alkaline flexible electrolyte based on thermo-reversible Pluronic® F127 hydrogels was proposed for wearable electronics, where the acid and alkaline can be decoupled but integrated simultaneously in one hydrogel.
References
More filters
Journal ArticleDOI

Materials Design for Rechargeable Metal-Air Batteries

TL;DR: In this paper, a review of the electrode reactions of metal-air batteries is presented, and the material design strategies of the air electrode, metal electrodes, metal electrode, electrolyte, and separator to overcome these issues are summarized.
Journal ArticleDOI

Atomically Thin Mesoporous Co 3 O 4 Layers Strongly Coupled with N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable Zinc-Air Batteries

TL;DR: The battery based on these Co3 O4 /N-rGO nanosheets demonstrates enhanced and stable electrochemical performance, even under severe deformation, and can be successfully knitted into clothes without short circuits under external forces.
Journal ArticleDOI

Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

TL;DR: The results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.
Journal ArticleDOI

Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc-Air Battery Based on Cross-Stacked Carbon Nanotube Sheets.

TL;DR: Fiber-shaped Zn-air batteries, are realized for the first time by designing aligned, cross-stacked and porous carbon nanotube sheets simultaneously that behave as a gas diffusion layer, a catalyst layer, and a current collector.
Journal ArticleDOI

Chitosan biopolymer for fuel cell applications.

TL;DR: In this article, the structure and properties of chitosan with respect to its applications in fuel cells are reviewed and recent achievements and prospect of its applications have also been included.
Related Papers (5)