scispace - formally typeset
Open AccessJournal ArticleDOI

Dipole formation at metal/PTCDA interfaces: Role of the Charge Neutrality Level

TLDR
In this paper, the formation of a metal/PTCDA (3, 4, 9, 10-perylenetetracarboxylic dianhydride) interface barrier was analyzed using weak-chemisorption theory.
Abstract
The formation of a metal/PTCDA (3, 4, 9, 10-perylenetetracarboxylic dianhydride) interface barrier is analyzed using weak-chemisorption theory. The electronic structure of the uncoupled PTCDA molecule and of the metal surface is calculated. Then, the induced density of interface states is obtained as a function of these two electronic structures and the interaction between both systems. This induced density of states is found to be large enough (even if the metal/PTCDA interaction is weak) for the definition of a Charge Neutrality Level for PTCDA, located 2.45 eV above the highest occupied molecular orbital. We conclude that the metal/PTCDA interface molecular level alignment is due to the electrostatic dipole created by the charge transfer between the two solids.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications

TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Journal ArticleDOI

Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces

TL;DR: A review of recent work on modeling of organic/metal and organic/organic interfaces can be found in this article, where the strength of the interaction at the interface has been used as the main factor.
Journal ArticleDOI

Energetics of metal–organic interfaces: New experiments and assessment of the field

TL;DR: In this article, a review of polymer and small molecule-on-metal interfaces with metal is presented, with emphasis placed specifically on the electronic structure and molecular level alignment at these interfaces, perceived differences between small molecule and polymer interfaces, and the difference between organic-onmetal and metal-onorganic interfaces.
Journal ArticleDOI

Unravelling the role of the interface for spin injection into organic semiconductors

TL;DR: In this paper, the metal/organic interface is found to be key for spin injection in organic semiconductors, and the authors investigated how to optimize the injection of spin into these materials.
References
More filters
Related Papers (5)