Electrical properties of compacted assembly of copper oxide nanoparticles
TL;DR: In this paper, both dc and ac electrical properties were measured on a compacted nanoparticle assembly and the dc electrical resistivity in the temperature range 140-300K was found to arise due to a variable range hopping conduction mechanism.
Abstract: Cu2O nanoparticles with diameters in the range 6.0-8.6nm were prepared by a chemical method. Both dc and ac electrical properties were measured on a compacted nanoparticle assembly. dc electrical resistivity in the temperature range 140-300K was found to arise due to a variable range hopping conduction mechanism. The ac resistivity variation as a function of frequency (in the range 10kHzto3MHz) and temperature (range 220–320K) was explained on the basis of the power-law exponent in percolating clusters. The interfacial amorphous phase of the nanoparticle assembly appears to control the electrical behavior of the system.
...read more
Citations
244 citations
221 citations
158 citations
109 citations
95 citations
References
23,109 citations
1,623 citations
1,099 citations
686 citations
571 citations