scispace - formally typeset
Open AccessJournal ArticleDOI

Electrical Transport Properties of Single-Layer WS2

Reads0
Chats0
TLDR
The fabrication of field-effect transistors based on single layers and bilayers of the semiconductor WS2 and the investigation of their electronic transport properties are reported, finding that the doping level strongly depends on the device environment and that long in situ annealing drastically improves the contact transparency.
Abstract
We report on the fabrication of field-effect transistors based on single layers and bilayers of the semiconductor WS2 and the investigation of their electronic transport properties. We find that the doping level strongly depends on the device environment and that long in situ annealing drastically improves the contact transparency, allowing four-terminal measurements to be performed and the pristine properties of the material to be recovered. Our devices show n-type behavior with a high room temperature on/off current ratio of similar to 10(6). They show clear metallic behavior at high charge carrier densities and mobilities as high as similar to 140 cm(2)/(V s) at low temperatures (above 300 cm(2)/(V s) in the case of bilayers). In the insulating regime, the devices exhibit variable range hopping, with a localization length of about 2 nm that starts to increase as the Fermi level enters the conduction band. The promising electronic properties of WS2, comparable to those of single layer MoS2 and WSe2, together with its strong spin-orbit coupling, make it interesting for future applications in electronic, optical, and valleytronic devices.

read more

Citations
More filters
Journal ArticleDOI

2D transition metal dichalcogenides

TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Journal ArticleDOI

High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity

TL;DR: The preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide and tungsten disulPHide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films are reported, a step towards the realization of atomically thin integrated circuitry.
Journal ArticleDOI

Electrical contacts to two-dimensional semiconductors

TL;DR: A comprehensive treatment of the physics of such interfaces at the contact region is presented and recent progress towards realizing optimal contacts for two-dimensional materials is discussed.
Journal ArticleDOI

The renaissance of black phosphorus

TL;DR: In this article, the authors discuss the potential of black phosphorus (black P) as a 2D layered material for nanoelectronics and nanophotonics, and give their perspectives on future 2D and thin-film black P research directions.
Journal ArticleDOI

Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures

TL;DR: This review of the challenges in the CVD growth of 2D materials highlights recent advances in the controlled growth of single crystal 2Dmaterials, with an emphasis on semiconducting transition metal dichalcogenides.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Book

Electronic processes in non-crystalline materials

TL;DR: The Fermi Glass and the Anderson Transition as discussed by the authorsermi glass and Anderson transition have been studied in the context of non-crystalline Semiconductors, such as tetrahedrally-bonded semiconductors.
Journal ArticleDOI

Emerging Photoluminescence in Monolayer MoS2

TL;DR: This observation shows that quantum confinement in layered d-electron materials like MoS(2), a prototypical metal dichalcogenide, provides new opportunities for engineering the electronic structure of matter at the nanoscale.
Related Papers (5)