scispace - formally typeset
Open AccessJournal ArticleDOI

Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis

TLDR
In this paper, a thermodynamics-based model was introduced to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions.
Abstract
Rational control over the morphology and the functional properties of inorganic nanostructures has been a long-standing goal in the development of bottom-up device fabrication processes. We report that the geometry of hydrothermally grown zinc oxide nanowires can be tuned from platelets to needles, covering more than three orders of magnitude in aspect ratio (~0.1-100). We introduce a classical thermodynamics-based model to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions. The performance of these nanowires rivals that of vapour-phase-grown nanostructures, and their low-temperature synthesis (<60 °C) is favourable to the integration and in situ fabrication of complex and polymer-supported devices. We illustrate this capability by fabricating an all-inorganic light-emitting diode in a polymeric microfluidic manifold. Our findings indicate that electrostatic interactions in aqueous crystal growth may be systematically manipulated to synthesize nanostructures and devices with enhanced structural control.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Titanium dioxide crystals with tailored facets

TL;DR: Titanium dioxide (TiO2) has been the most intensively investigated binary transition metal oxide in the past four decades and the annual number of papers published on TiO2 has seen a continuous increase, particularly since the beginning of this century.
Journal ArticleDOI

25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications

TL;DR: A detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted.
Journal ArticleDOI

Localized Surface Plasmon Resonance in Semiconductor Nanocrystals

TL;DR: The fundamental electromagnetic dynamics governing light matter interaction in plasmonic semiconductor NCs and the realization of various distinctive physical properties made possible by the advancement of colloidal synthesis routes to such NCs are discussed.
Journal ArticleDOI

Surface Tuning for Oxide-Based Nanomaterials as Efficient Photocatalysts

TL;DR: In this review, special emphases are given to surface tuning of novel nanocrystallites for high thermal stability, hierarchical structure assembly, heterojunctional nanocomposites and high-energy-facet exposure, along with effective testing tools for photogenerated charge properties at the surfaces and/or interfaces.
Journal ArticleDOI

Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics

TL;DR: In this article, the authors review the recent progress in advancing fundamental understanding and in realizing practical applications of piezotronics and piezo-phototronics, and provide an in-depth discussion of future research directions.
References
More filters
Journal ArticleDOI

Nanowire dye-sensitized solar cells

TL;DR: This work introduces a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires, which features a surface area up to one-fifth as large as a nanoparticle cell.
Journal ArticleDOI

Electron Emission in Intense Electric Fields

TL;DR: In this article, the main features of the extraction of electrons from cold metals by intense electric fields are well known, and an approximate theory of the effect was first developed by Schottky.
Journal ArticleDOI

A laser ablation method for the synthesis of crystalline semiconductor nanowires

TL;DR: Studies carried out with different conditions and catalyst materials confirmed the central details of the growth mechanism and suggest that well-established phase diagrams can be used to predict rationally catalyst materials and growth conditions for the preparation of nanowires.
Journal ArticleDOI

White organic light-emitting diodes with fluorescent tube efficiency

TL;DR: An improved OLED structure which reaches fluorescent tube efficiency and focuses on reducing energetic and ohmic losses that occur during electron–photon conversion, which could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.
Related Papers (5)