scispace - formally typeset
Open AccessJournal ArticleDOI

Finding community structure in networks using the eigenvectors of matrices

Mark Newman
- 11 Sep 2006 - 
- Vol. 74, Iss: 3, pp 036104-036104
Reads0
Chats0
TLDR
A modularity matrix plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations, and a spectral measure of bipartite structure in networks and a centrality measure that identifies vertices that occupy central positions within the communities to which they belong are proposed.
Abstract
We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as ``modularity'' over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a centrality measure that identifies vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Efficient and principled method for detecting communities in networks.

TL;DR: This work describes a method for finding overlapping communities based on a principled statistical approach using generative network models and shows how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasonable running times.
Journal ArticleDOI

Random walks and diffusion on networks

TL;DR: The theory and applications of random walks on networks are surveyed, restricting ourselves to simple cases of single and non-adaptive random walkers, and three main types are distinguished: discrete-time random walks, node-centric continuous-timerandom walks, and edge-centric Continuous-Time random walks.
Journal ArticleDOI

Fuzzy communities and the concept of bridgeness in complex networks.

TL;DR: An algorithm for determining the optimal membership degrees with respect to a given goal function is created, and a measure is introduced that is able to identify outlier vertices that do not belong to any of the communities, bridges that have significant membership in more than one single community, and regular Vertices that fundamentally restrict their interactions within their own community.
Journal ArticleDOI

Attack Robustness and Centrality of Complex Networks

TL;DR: This work investigates the effect on network structure of targeting vertices for removal based on a wider range of non-local measures of potential importance than simply degree or betweenness.
Journal ArticleDOI

Disrupted Functional Brain Connectome in Individuals at Risk for Alzheimer's Disease

TL;DR: This study demonstrates a disruption of whole-brain topological organization of the functional connectome in amnestic mild cognitive impairment (aMCI), which provides novel insights into the pathophysiological mechanism of aMCI and highlights the potential for using connectome-based metrics as a disease biomarker.
References
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Journal ArticleDOI

The Strength of Weak Ties

TL;DR: In this paper, it is argued that the degree of overlap of two individuals' friendship networks varies directly with the strength of their tie to one another, and the impact of this principle on diffusion of influence and information, mobility opportunity, and community organization is explored.
Journal ArticleDOI

Emergence of Scaling in Random Networks

TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

The Structure and Function of Complex Networks

Mark Newman
- 01 Jan 2003 - 
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Related Papers (5)