scispace - formally typeset
Journal ArticleDOI

Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films

TLDR
Deep-ultraviolet irradiation induces efficient condensation and densification of oxide semiconducting films by photochemical activation at low temperature, which is applicable to numerous metal-oxide semiconductors, and the performance (in terms of transistor mobility and operational stability) of thin-film transistors fabricated by this route compares favourably with that ofthin- film transistors based on thermally annealed materials.
Abstract
A method for annealing metal-oxide semiconductor films with deep-ultraviolet light yields thin-film transistors with performance comparable to that of thermally annealed devices, and widens the range of substrates on which such devices can be fabricated. Solution-processable metal-oxide semiconductors are attractive materials for low-cost, flexible electronics, but the need to anneal the deposited materials at relatively high temperatures limits the range of substrates on which such devices can be fabricated. Now Yong-Hoon Kim and colleagues demonstrate that irradiating the solution-cast films with deep ultraviolet light can obviate the need for an annealing step. In this system, photochemical activation serves essentially the same purpose as annealing, and the resulting semiconducting materials have device performance levels comparable to those produced using the high-temperature techniques. Amorphous metal-oxide semiconductors have emerged as potential replacements for organic and silicon materials in thin-film electronics. The high carrier mobility in the amorphous state, and excellent large-area uniformity, have extended their applications to active-matrix electronics, including displays, sensor arrays and X-ray detectors1,2,3,4,5,6,7. Moreover, their solution processability and optical transparency have opened new horizons for low-cost printable and transparent electronics on plastic substrates8,9,10,11,12,13. But metal-oxide formation by the sol–gel route requires an annealing step at relatively high temperature2,14,15,16,17,18,19, which has prevented the incorporation of these materials with the polymer substrates used in high-performance flexible electronics. Here we report a general method for forming high-performance and operationally stable metal-oxide semiconductors at room temperature, by deep-ultraviolet photochemical activation of sol–gel films. Deep-ultraviolet irradiation induces efficient condensation and densification of oxide semiconducting films by photochemical activation at low temperature. This photochemical activation is applicable to numerous metal-oxide semiconductors, and the performance (in terms of transistor mobility and operational stability) of thin-film transistors fabricated by this route compares favourably with that of thin-film transistors based on thermally annealed materials. The field-effect mobilities of the photo-activated metal-oxide semiconductors are as high as 14 and 7 cm2 V−1 s−1 (with an Al2O3 gate insulator) on glass and polymer substrates, respectively; and seven-stage ring oscillators fabricated on polymer substrates operate with an oscillation frequency of more than 340 kHz, corresponding to a propagation delay of less than 210 nanoseconds per stage.

read more

Citations
More filters
Journal ArticleDOI

Metal oxides for optoelectronic applications

TL;DR: This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin- film transistors, solar cells, diodes and memories.
Journal ArticleDOI

Building devices from colloidal quantum dots.

TL;DR: Recent progress in tailoring and combining quantum dots to build electronic and optoelectronic devices and new ligand chemistries and matrix materials have been reported that provide freedom to control the dynamics of excitons and charge carriers and to design device interfaces are reviewed.
Journal ArticleDOI

Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites

TL;DR: This work introduces tin-doped indium oxide nanocrystals into niobium oxide glass (NbOx), and realizes a new amorphous structure as a consequence of linking it to the nanocry crystals, which demonstrates a previously unrealized optical switching behaviour that will enable the dynamic control of solar radiation transmittance through windows.
Journal ArticleDOI

Chemical Synthesis of Single Atomic Site Catalysts.

TL;DR: In this review, various synthetic strategies for the synthesis of SASC are summarized with concrete examples highlighting the key issues of the synthesis methods to stabilize single metal atoms on supports and to suppress their migration and agglomeration.
Journal ArticleDOI

Recent Progress in Materials and Devices toward Printable and Flexible Sensors

TL;DR: In this review, recent progress in materials and devices for future wearable sensor technologies for bio and medical applications are reported.
References
More filters
Journal ArticleDOI

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors

TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Journal ArticleDOI

Present status of amorphous In–Ga–Zn–O thin-film transistors

TL;DR: Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs.
Journal ArticleDOI

Flexible organic transistors and circuits with extreme bending stability

TL;DR: This work demonstrates organic transistors and complementary circuits that continue to operate without degradation while being folded into a radius of 100 μm, enabled by a very thin plastic substrate, an atomically smooth planarization coating and a hybrid encapsulation stack that places the transistors in the neutral strain position.
PatentDOI

Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates

TL;DR: In this paper, a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, is used to provide a semiconductor channel exhibiting improved electronic properties relative to conventional nanotube-based electronic systems.
Journal ArticleDOI

Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing

TL;DR: Combustion processing is now reported as a new low-temperature route for the deposition of diverse metal oxide films, and high-performance transistors are demonstrated using this method as discussed by the authors.
Related Papers (5)