scispace - formally typeset
Journal ArticleDOI

Metal oxides for optoelectronic applications

Xinge Yu, +2 more
- 01 Apr 2016 - 
- Vol. 15, Iss: 4, pp 383-396
TLDR
This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin- film transistors, solar cells, diodes and memories.
Abstract
Optical transparency, tunable conducting properties and easy processability make metal oxides key materials for advanced optoelectronic devices. This Review discusses recent advances in the synthesis of these materials and their use in applications. Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III–V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p–n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

read more

Citations
More filters
Journal ArticleDOI

Mixed-dimensional van der Waals heterostructures

TL;DR: In this paper, a survey of mixed-dimensional van der Waals (vdw) heterostructures is presented, where 2D materials with non-2D materials adhere primarily through non-covalent interactions.
Journal ArticleDOI

17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS

TL;DR: The achieved PCE is the highest reported to date for organic solar cells comprised of 2D charge transport interlayers and highlights the potential of TMDs as inexpensive HTLs for high-efficiency organic photovoltaics.
Journal ArticleDOI

Molybdenum Oxides – From Fundamentals to Functionality

TL;DR: The properties and applications of molybdenum oxides are reviewed in depth, while an insightful outlook into future prospective applications for moly bdenum oxide is presented.
Journal ArticleDOI

P-type transparent conducting oxides.

TL;DR: This article provides a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+-based oxides), and post-transition metal oxides with lone pair state (ns (2).
Journal ArticleDOI

Transparent Electrodes for Efficient Optoelectronics

TL;DR: The most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs).
References
More filters
Journal ArticleDOI

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors

TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Journal ArticleDOI

Nanowire dye-sensitized solar cells

TL;DR: This work introduces a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires, which features a surface area up to one-fifth as large as a nanoparticle cell.
Journal ArticleDOI

The path to ubiquitous and low-cost organic electronic appliances on plastic

TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Journal ArticleDOI

Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor

TL;DR: The fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator provides a step toward the realization of transparent electronics for next-generation optoelectronics.
Journal ArticleDOI

A polymer tandem solar cell with 10.6% power conversion efficiency

TL;DR: The development of a high-performance low bandgap polymer that enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions, which is the first certified polymer solar cell efficiency over 10%.
Related Papers (5)
Trending Questions (1)
What is the role of metal and metal oxide nanoparticles in enhancing the performance of optoelectronic devices?

The provided paper does not discuss the role of metal and metal oxide nanoparticles in enhancing the performance of optoelectronic devices.