scispace - formally typeset
Open AccessJournal ArticleDOI

galev evolutionary synthesis models – I. Code, input physics and web interface

Reads0
Chats0
TLDR
The GALEV (Galev Evolutionary Evolutionary Models for Galaxies) model as mentioned in this paper describes the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr.
Abstract
GALEV (GALaxy EVolution) evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr from the onset of star formation shortly after the big bang until today. For galaxies, GALEV includes a simultaneous treatment of the chemical evolution of the gas and the spectral evolution of the stellar content, allowing for what we call a chemically consistent treatment: we use input physics (stellar evolutionary tracks, stellar yields and model atmospheres) for a large range of metallicities and consistently account for the increasing initial abundances of successive stellar generations. Here we present the latest version of the GALEV evolutionary synthesis models that are now interactively available at http://www.galev.org. We review the currently used input physics, and also give details on how this physics is implemented in practice. We explain how to use the interactive web interface to generate models for user-defined parameters and also give a range of applications that can be studied using GALEV, ranging from star clusters, undisturbed galaxies of various types E–Sd to starburst and dwarf galaxies, both in the local and the high-redshift Universe.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

UV Luminosity Functions at redshifts z~4 to z~10: 10000 Galaxies from HST Legacy Fields

TL;DR: In this paper, the evolution of the UV LF from z~10 to z~4 has been studied and a simple conditional LF model based on halo growth and evolution in the M/L ratio of halos ((1+z)**-1.5) has been proposed.
Journal ArticleDOI

The propagation of uncertainties in stellar population synthesis modeling. iii. model calibration, comparison, and evaluation

TL;DR: In this paper, a comprehensive calibration of the FSPS model against a suite of data was performed, including ultraviolet, optical, and near-IR photometry, surface brightness fluctuations, and integrated spectra of star clusters in the Magellanic Clouds (MCs), M87, M31, and the Milky Way (MW).
Journal ArticleDOI

A Critical Assessment of Photometric Redshift Methods: A CANDELS Investigation

TL;DR: In this paper, the results from 11 participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs), and priors, are used to examine the properties of photometrically redshifts applied to deep fields with broadband multi-wavelength coverage.
References
More filters
Journal ArticleDOI

The relationship between infrared, optical, and ultraviolet extinction

TL;DR: In this article, the average extinction law over the 3.5 micron to 0.125 wavelength range was derived for both diffuse and dense regions of the interstellar medium. And the validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature.
Journal ArticleDOI

Stellar population synthesis at the resolution of 2003

TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Journal ArticleDOI

The Luminosity function and stellar evolution

TL;DR: In this paper, the evolutionary significance of the observed luminosity function for main-sequence stars in the solar neighborhood is discussed and it is shown that stars move off the main sequence after burning about 10 per cent of their hydrogen mass and that stars have been created at a uniform rate in a solar neighborhood for the last five billion years.
Journal ArticleDOI

Galactic stellar and substellar initial mass function

TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Journal ArticleDOI

On the variation of the initial mass function

TL;DR: In this paper, the uncertainty inherent in any observational estimate of the IMF is investigated by studying the scatter introduced by Poisson noise and the dynamical evolution of star clusters, and it is found that this apparent scatter reproduces quite well the observed scatter in power-law index determinations, thus defining the fundamental limit within which any true variation becomes undetectable.
Related Papers (5)