scispace - formally typeset
Open AccessJournal ArticleDOI

Generation of multifunctional magnetic nanoparticles with amplified catalytic activities by genetic expression of enzyme arrays on bacterial magnetosomes

Frank Mickoleit, +1 more
- Vol. 2, Iss: 1, pp 1700109
Reads0
Chats0
TLDR
In this paper, a new in vivo strategy is explored for magnetosome display of foreign polypeptides with maximized protein-to-particle ratios, where arrays of up to five monomers of the model enzyme glucuronidase GusA plus the additional fluorophore mEGFP are genetically fused as single large hybrid proteins to highly expressed magnetosOME protein anchors.
Abstract
Due to their highly regulated biosynthesis, magnetosomes biomineralized by magnetotactic bacteria represent natural magnetic nanoparticles with unique physical and chemical properties. They consist of a magnetite core that is surrounded by a biological membrane and are therefore reminiscent to magnetic “core–shell” nanoparticles. Their usability in many nanotechnological and biomedical applications would be further improved by the introduction of additional catalytic and imaging modalities. Here, a new in vivo strategy is explored for magnetosome display of foreign polypeptides with maximized protein-to-particle ratios. Arrays of up to five monomers of the model enzyme glucuronidase GusA plus the additional fluorophore mEGFP are genetically fused as single large hybrid proteins to highly expressed magnetosome protein anchors. In total, about 190 GusA monomers are covalently attached to individual particles. Assuming layers of GusA rows surrounding the particles, the monomers would thus cover up to 90% of the magnetosome surface. The approach generates nanoparticles that exhibit magnetism, fluorescence, and stable catalytic activities, which are stepwise increased with the number of GusA monomers. In summary, multicopy expression of arrayed foreign proteins represents a powerful methodology for the biosynthesis of tailored biohybrid magnetic nanoparticles with several genetically encoded and tunable functionalities.

read more

Content maybe subject to copyright    Report


Mickoleit, F., & Schüler, D. (2018). Generation of multifunctional magnetic nanoparticles
with amplified catalytic activities by genetic expression of enzyme arrays on bacterial
magnetosomes. Advanced Biosystems, 2(1), 1700109

!" #$
%!&'


Generation of Multifunctional Magnetic Nanoparticles with Amplified Catalytic Activities by
Genetic Expression of Enzyme Arrays on Bacterial Magnetosomes
Frank Mickoleit, and Dirk Schüler*
()*+,((%-
$ . (* $/01233. 4
5!(+%6! 
7 89
9 +
Abstract
:  9 
; 
  
<!=  
  

>in vivo 8  
89!!& 9 
4&54), 
  8?4&
 & 4&
@
:8 
!4&? !
 8   
  



1. Introduction
*A*B,C9 
 
D!1E
?
Magnetospirillum gryphiswaldense  A)
1
:
3
C 
1 A2!F+C
 !!
!!
D!2E
(  
DFE
 ;
   9
9+*B,
DGE
%
  


DE
 
DE
!
 
D1E
 
D32E

A*H?C
DF!E
A*,?C
DE

> ;
#9in vitro
D!3E
+
 ;. 
 in vivo)
8A*C*#
AI*1C&*# !
9
D2FE

DGE
 
A2!+(C8 B!
 
D2E
 
 
DG1E

1
,*#8
A4),C
D11E
 AC

D1E
)!

DE
*#8 4!

D11E
*>#?8
D13E
9 )
8*#M. magneticum
 *F*& 

D11E
)89 !
HB,9  
 8
D12E
8:
D1FE

>8  9  
8?A
!C9  
  89!!
 ,8 
).!+
DGE
8 9,
(#

AH.%CmamC?!9
4),8AI54),CG!8
>8  8 
*# ?
 .
DGE
4),
*#
84),

3
? 8  8
9 4&AJ!Escherichia coliC
M. gryphiswaldense  

DG11GE
"  4&
54), *#
,854),
G! 4&8! 
) ; 
4& 
  !8
   

2. Results
2.1. Magnetosomal expression of GusA-mEGFP fusions results in magnetic fluorescent
particles with stable catalytic activity
4&4&!54),*#mamC-(gusA)
n
-megfp
9,
(#32
9
AH.%C
DGE
#!954),
' AnCgusA
9AFigure 1C
) 84&"mamC-gusA-megfp
KmamCmamC-gusA-megfpmamC-gusA-megfp 2
%
4&8 

Figures
Citations
More filters
Journal ArticleDOI

A Versatile Toolkit for Controllable and Highly Selective Multifunctionalization of Bacterial Magnetic Nanoparticles

TL;DR: A versatile toolkit is developed for the multifunctionalization of magnetic nanoparticles in the magnetotactic bacterium Magnetospirillum gryphiswaldense, and the use of several abundant magnetosome membrane proteins as anchors for functional moieties is explored.
Journal ArticleDOI

Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications.

TL;DR: In this article, the design space of in-vivo self-assembled polyhydroxyalkanoate (PHA) particles as biocatalyst immobilization scaffolds is explored.
Journal ArticleDOI

Magnetotactic Bacteria and Magnetosomes: Basic Properties and Applications

TL;DR: Magnetotactic bacteria (MTB) belong to several phyla and exhibit the ability of magneto-aerotaxis as mentioned in this paper, which accounts for the growing interest in MTB and magnetofossils in paleo-and rock magnetism and in a wider field of biogeoscience.
Journal ArticleDOI

In Vivo Coating of Bacterial Magnetic Nanoparticles by Magnetosome Expression of Spider Silk-Inspired Peptides

TL;DR: It is demonstrated that the combination of two different biogenic materials generates a genetically encoded hybrid composite with engineerable new properties and enhanced potential for various applications.
Journal ArticleDOI

A Compass To Boost Navigation: Cell Biology of Bacterial Magnetotaxis

TL;DR: This minireview provides an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device.
References
More filters
Journal ArticleDOI

Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4

TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products.
Journal Article

Cleavage of structural proteins during the assemble of the head of bacterio-phage T4

U. K. Laemmli
- 01 Jan 1970 - 
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products as mentioned in this paper.
Journal ArticleDOI

Magnetic Nanoparticles in MR Imaging and Drug Delivery

TL;DR: A background on applications of MNPs as MR imaging contrast agents and as carriers for drug delivery and an overview of the recent developments in this area of research are provided.
Journal ArticleDOI

Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging.

TL;DR: These magnetism-engineered iron oxide (MEIO) nanoprobes, when conjugated with antibodies, showed enhanced magnetic resonance imaging (MRI) sensitivity for the detection of cancer markers compared with probes currently available and could enhance the ability to visualize other biological events critical to diagnostics and therapeutics.
Journal ArticleDOI

β -Glucuronidase from Escherichia coli as a Gene-Fusion Marker

TL;DR: There are several biological systems in which uidA-encoded beta-glucuronidase may be an attractive alternative or complement to previously described gene-fusion markers such as beta-galactosidase or chloramphenicol acetyltransferase.
Related Papers (5)
Frequently Asked Questions (14)
Q1. What are the contributions in "Generation of multifunctional magnetic nanoparticles with amplified catalytic activities by genetic expression of enzyme arrays on bacterial magnetosomes" ?

Assuming layers of GusA rows surrounding the particles, the monomers would thus cover up to 90 % of the magnetosome surface. Their approach generates nanoparticles that exhibit magnetism, fluorescence and stable catalytic activities, which were step-wise increased with the number of GusA monomers. In summary, multicopy expression of arrayed foreign proteins represents a powerful methodology for the biosynthesis of tailored biohybrid magnetic nanoparticles with several genetically encoded and tunable functionalities. 

GusA is a cofactor-independent acid hydrolase that catalyzes the cleavage of 3-glucuronides, yielding 3-glucuronates and an alcohol. 

Since the GusA enzyme is likely to function as a 272-kDa homotetramer,[41,45,46] the catalytic activity of these fusions depends on the proper folding of the fused GusA monomers and their assembly into GusA tetramers. 

MamC was also exploited for the magnetosomal display of immunoglobulin Gbinding domains,[33] single chain MHCI/peptide complexes[34] and enzyme proteins. 

Due to an increased proximity of single GusA monomers, tetramer formation might be even facilitated, as suggested by decreased KM values formagnetosomal GusA compared to soluble expressed monomers. 

In their study, chromosomal insertion of fusions with multiple copies of GusA in M. gryphiswaldense led to up to 18% (w/w) enzyme loading of the magnetosomes and a nearly 3-fold increased catalytic activity (relative to single copy expression) using genetic multiplication of GusA monomers fused as large hybrid proteins to abundant MamC anchors. 

Since the stabile expression of catalytically active enzyme proteins, their immobilization and re-usability arestill common challenges,[50] this provides a highly promising route also for the display of other enzyme proteins and peptides more relevant for both biotechnological, biomedical and research applications. 

In combination with codon-optimization of the reporter eGFP for magnetobacterial expression (= mEGFP) this led to 2.8-fold increased expression levels. 

In addition, potential application (e.g. as magnetic sensors or as bi-/multimodal contrast agents) and functionalization of magnetosomes rely on densely decorated, catalytically active particles with maximized protein-to-particle ratios, which has been difficult to achieve by genetic means. 

In this study, the authors have demonstrated that multimeric enzymes can be displayed on magnetosome particles in high copy numbers, thereby multiplying their coverage by 5 and nearly triplicating their specific activity per particle. 

Sheppard et al. (2011) observed a high activity for GusA when immobilized to living diatom silica by genetic fusion to silaffin protein, resulting in about 0.1% (w/w) enzyme loading of the silica.[44] 

The enzymatic stability of functionalized MamC-GusA-mEGFP magnetosomes was investigated by subjecting them to multiple cycles of collection and re-addition of fresh substrate. 

TEM analysis also showed an increased spacing between purified magnetosome particles, and electron-light junctions of up to 30 nm were occasionally observed between isolated MamC-(GusA)2-5-eGFP magnetosomes (Figure 4). 

This so-called magnetosome membrane consists of phospholipids and a set of magnetosome-specific, membrane-associated proteins.[1-5]