scispace - formally typeset
Journal ArticleDOI

Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water

Reads0
Chats0
TLDR
A mechanism in which the role of Au is to respond under visible light and Cu binds to CO and directs the reduction pathway is proposed.
Abstract
Commercial P25 modified by Au–Cu alloy nanoparticles as thin film exhibits, for CO2 reduction by water under sun simulated light, a rate of methane production above 2000 μmol (g of photocatalyst)−1 h–1. Although evolution of hydrogen is observed and O2 and ethane detected, the selectivity of conduction band electrons for methane formation is almost complete, about 97%. This photocatalytic behavior is completely different from that measured for Au/P25 (hydrogen evolution) and Cu/P25 (lower activity, but similar methane selectivity). Characterization by TEM, XPS, and UV–vis spectroscopy shows that Au and Cu are alloyed in the nanoparticles. FT-IR spectroscopy and chemical analysis have allowed one to detect on the photocatalyst surface the presence of CO2•–, Cu–CO, and elemental C. Accordingly, a mechanism in which the role of Au is to respond under visible light and Cu binds to CO and directs the reduction pathway is proposed.

read more

Citations
More filters
Journal ArticleDOI

Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels.

TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Journal ArticleDOI

CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts

TL;DR: In this article, a review describes recent advances in the fundamental understanding of CO2 photoreduction on the surface of heterogeneous catalysts and particularly provides an overview of enhancing the adsorption/activation of CO 2 molecules.
Journal ArticleDOI

Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes

TL;DR: Photocatalysts and Photoelectrodes James L. White,† Maor F. Pander III,† Yuan Hu,† Ivy C. Fortmeyer,† James Eujin Park,† Tao Zhang,† Kuo Liao,† Jing Gu,‡ Yong Yan, ‡ Travis W. Shaw,† and Esta Abelev.
Journal ArticleDOI

Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review

TL;DR: In this paper, a review of the surface modification of TiO2 for photocatalytic CO2 reduction, including impurity doping, metal deposition, alkali modification, heterojunction construction and carbon-based material loading, is presented.
Journal ArticleDOI

Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels

TL;DR: In this paper, a review gives an overview of fundamental aspects and recent research advances of heterogeneous photocatalytic CO2 conversion systems in the last 3 years, and the catalysts are categorized as one-step excitation semiconductor systems, one-stage excitation photosensitized semiconductor system, and two-step hybrid systems such as semiconductor heterojunction and Z-scheme systems.
References
More filters
Journal ArticleDOI

Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction

TL;DR: Pd-Pt bimetallic nanodendrites consisting of a dense array of Pt branches on a Pd core by reducing K2PtCl4 with L-ascorbic acid in the presence of uniform Pd nanocrystal seeds in an aqueous solution showed relatively large surface areas and particularly active facets toward the oxygen reduction reaction (ORR), the rate-determining step in a proton-exchange membrane fuel cell.
Journal ArticleDOI

Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders

TL;DR: In this paper, the photoelectrocatalytic reduction of carbon dioxide to form organic compounds such as formic acid, formaldeyde, methyl alcohol and methane, in the presence of photosensitive semiconductor powders suspended in water as catalysts, is described.
Journal ArticleDOI

Photocatalytic reduction of CO2 on TiO2 and other semiconductors.

TL;DR: In this paper, the authors present a review of the current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors.
Related Papers (5)