scispace - formally typeset
Journal ArticleDOI

Improved Thermoelectric Power Factor in Metal-Based Superlattices

Daryoosh Vashaee, +1 more
- 11 Mar 2004 - 
- Vol. 92, Iss: 10, pp 106103-106103
Reads0
Chats0
TLDR
It is shown that metal-based superlattices with tall barriers can achieve a large effective thermoelectric figure of merit (ZT > 5 at room temperature), a key parameter to achieving high performance is the nonconservation of lateral momentum during the thermionic emission process.
Abstract
In this paper we present a detailed theory of electron and thermoelectric transport perpendicular to heterostructure superlattices. This nonlinear transport regime above barriers is also called heterostructure thermionic emission. We show that metal-based superlattices with tall barriers can achieve a large effective thermoelectric figure of merit (ZT > 5 at room temperature). A key parameter to achieving high performance is the nonconservation of lateral momentum during the thermionic emission process. Conservation of lateral momentum is a consequence of translational symmetry in the plane of the superlattice. We also discuss the use of nonplanar barriers and embedded quantum dot structures to achieve high thermoelectric conversion efficiency.

read more

Citations
More filters
Journal ArticleDOI

Nanoscale Self-Assembly of Thermoelectric Materials: A Review of Chemistry-Based Approaches

TL;DR: Thermopower enhancement due to size and energy filtering effects, electrical conductivity enhancement, and thermal conductivity reduction mechanisms inherent in bottom-up nanoscale self-assembly syntheses are indicative of the impact that these techniques will play in future thermoelectric applications.
Journal ArticleDOI

Synthesis, characterization, and thermoelectric properties of nanostructured bulk p-type MnSi1.73, MnSi1.75, and MnSi1.77

TL;DR: In this article, a series of nanostructured bulk p-type higher manganese silicide (HMS) materials with different compositions of MnSi x (where x = 1.73, 1.75 and 1.77) were synthesized via mechanical ball milling and hot-press sintering.
Journal ArticleDOI

Enhanced thermoelectric properties of Au nanodot-included Bi2Te3 nanotube composites

TL;DR: In this article, a scalable synthesis of Au nanodots (Au-ND)/Bi2Te3 nanotube (BT-NT) nanocomposites by the bottom-up synthesis of hybrid raw materials and subsequent spark plasma sintering, and their thermoelectric properties were systematically compared with those of Au-doped Bi2Te 3 compounds.
Posted Content

$\textit{Ab initio}$ study of electron mean free paths and thermoelectric properties of lead telluride

TL;DR: In this article, a parameter-free first-principles calculation of electron and phonon transport properties of PbTe, including mode-by-mode electron-phonon scattering analysis, is presented.
Journal ArticleDOI

Tuning phonon transport spectrum for better thermoelectric materials

TL;DR: Recent advances in analyzing spectral impedance of phonon transport on the basis of various effects including alloy scattering, boundary scattering, and particle resonance are reviewed.
References
More filters
Journal ArticleDOI

Thin-film thermoelectric devices with high room-temperature figures of merit

TL;DR: Th thin-film thermoelectric materials are reported that demonstrate a significant enhancement in ZT at 300 K, compared to state-of-the-art bulk Bi2Te3 alloys, and the combination of performance, power density and speed achieved in these materials will lead to diverse technological applications.
Journal ArticleDOI

Quantum dot superlattice thermoelectric materials and devices.

TL;DR: It is demonstrated that improved cooling values relative to the conventional bulk (Bi,Sb)2(Se,Te)3thermoelectric materials using a n-type film in a one-leg thermoelectrics device test setup, which cooled the cold junction 43.7 K below the room temperature hot junction temperature of 299.8 K.
Journal ArticleDOI

Heterostructure integrated thermionic coolers

TL;DR: In this paper, a single-stage room temperature cooling of high power electronic and optoelectronic devices is achieved by selective emission of hot electrons over a barrier layer from the cathode to the anode.
Journal ArticleDOI

Multilayer Thermionic Refrigeration

TL;DR: In this paper, a new method of refrigeration is proposed by thermionic emission of electrons over Schottky barriers between metals and semiconductors, which can have only a small temperature difference.
Journal ArticleDOI

Electronic and thermoelectric transport in semiconductor and metallic superlattices

TL;DR: In this article, a detailed theory of nonisothermal electron transport perpendicular to multilayer superlattice structures is presented, and the currentvoltage and cooling power density are calculated using Fermi-Dirac statistics, density-of-states for a finite quantum well and the quantum mechanical reflection coefficient.
Related Papers (5)