scispace - formally typeset
Journal ArticleDOI

Improved Thermoelectric Power Factor in Metal-Based Superlattices

Daryoosh Vashaee, +1 more
- 11 Mar 2004 - 
- Vol. 92, Iss: 10, pp 106103-106103
Reads0
Chats0
TLDR
It is shown that metal-based superlattices with tall barriers can achieve a large effective thermoelectric figure of merit (ZT > 5 at room temperature), a key parameter to achieving high performance is the nonconservation of lateral momentum during the thermionic emission process.
Abstract
In this paper we present a detailed theory of electron and thermoelectric transport perpendicular to heterostructure superlattices. This nonlinear transport regime above barriers is also called heterostructure thermionic emission. We show that metal-based superlattices with tall barriers can achieve a large effective thermoelectric figure of merit (ZT > 5 at room temperature). A key parameter to achieving high performance is the nonconservation of lateral momentum during the thermionic emission process. Conservation of lateral momentum is a consequence of translational symmetry in the plane of the superlattice. We also discuss the use of nonplanar barriers and embedded quantum dot structures to achieve high thermoelectric conversion efficiency.

read more

Citations
More filters
Journal ArticleDOI

Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface

TL;DR: In this paper, the energy-filtering effect was successfully employed at the organic-inorganic semiconductor interface of poly(3-hexylthiophene) (P3HT) nanocomposites with the addition of Bi2Te3 nanowires, where low-energy carriers were strongly scattered by the appropriately engineered potential barrier of the P3HT-Bi 2Te3 interface.
Journal ArticleDOI

Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2+m. The myth of solid solutions

TL;DR: Experimental evidence is provided for a conceptual basis that could be employed when designing high performance thermoelectric materials and dispel the decades long belief that the systems (AgSbTe2)(1-x)(PbTe)x are solid solutions.
Journal ArticleDOI

Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials

TL;DR: In this article, the authors discuss the ideas and strategies proposed and developed in order to improve the thermoelectric power factor and thus hopefully move us closer to the target of a ZT < 2.
Journal ArticleDOI

Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties

TL;DR: In this article, the authors demonstrate that by tuning the carrier scattering mechanism in n-type Mg3Sb2-based materials, it is possible to noticeably improve the Hall mobility, from ∼19 to ∼77 cm2 V−1 s−1, and hence substantially increase the power factor by a factor of 3.
Journal ArticleDOI

Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field

TL;DR: In this paper, a review deals with the novel aspects of nano-structuring of thermoelectric materials, from the so-called 3D nanobulk materials down to the incorporation of 0D quantum dots in thermocyclic structures.
References
More filters
Journal ArticleDOI

Thin-film thermoelectric devices with high room-temperature figures of merit

TL;DR: Th thin-film thermoelectric materials are reported that demonstrate a significant enhancement in ZT at 300 K, compared to state-of-the-art bulk Bi2Te3 alloys, and the combination of performance, power density and speed achieved in these materials will lead to diverse technological applications.
Journal ArticleDOI

Quantum dot superlattice thermoelectric materials and devices.

TL;DR: It is demonstrated that improved cooling values relative to the conventional bulk (Bi,Sb)2(Se,Te)3thermoelectric materials using a n-type film in a one-leg thermoelectrics device test setup, which cooled the cold junction 43.7 K below the room temperature hot junction temperature of 299.8 K.
Journal ArticleDOI

Heterostructure integrated thermionic coolers

TL;DR: In this paper, a single-stage room temperature cooling of high power electronic and optoelectronic devices is achieved by selective emission of hot electrons over a barrier layer from the cathode to the anode.
Journal ArticleDOI

Multilayer Thermionic Refrigeration

TL;DR: In this paper, a new method of refrigeration is proposed by thermionic emission of electrons over Schottky barriers between metals and semiconductors, which can have only a small temperature difference.
Journal ArticleDOI

Electronic and thermoelectric transport in semiconductor and metallic superlattices

TL;DR: In this article, a detailed theory of nonisothermal electron transport perpendicular to multilayer superlattice structures is presented, and the currentvoltage and cooling power density are calculated using Fermi-Dirac statistics, density-of-states for a finite quantum well and the quantum mechanical reflection coefficient.
Related Papers (5)