scispace - formally typeset
Open AccessProceedings Article

Improved training of wasserstein GANs

TLDR
The authors proposed to penalize the norm of the gradient of the critic with respect to its input to improve the training stability of Wasserstein GANs and achieve stable training of a wide variety of GAN architectures with almost no hyperparameter tuning.
Abstract
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only poor samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models with continuous generators. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

A Style-Based Generator Architecture for Generative Adversarial Networks

TL;DR: This article proposed an alternative generator architecture for GANs, borrowing from style transfer literature, which leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images.
Posted Content

mixup: Beyond Empirical Risk Minimization

TL;DR: Mixup as discussed by the authors trains a neural network on convex combinations of pairs of examples and their labels, and regularizes the neural network to favor simple linear behavior in between training examples, which improves the generalization of state-of-the-art neural network architectures.
Posted Content

Large Scale GAN Training for High Fidelity Natural Image Synthesis

TL;DR: BigGAN as mentioned in this paper applies orthogonal regularization to the generator, allowing fine control over the trade-off between sample fidelity and variety by reducing the variance of the generator's input, leading to models which set the new state of the art in class-conditional image synthesis.
Journal ArticleDOI

Generative Adversarial Networks: An Overview

TL;DR: Generative adversarial networks (GANs) as mentioned in this paper provide a way to learn deep representations without extensively annotated training data by deriving backpropagation signals through a competitive process involving a pair of networks.
Proceedings ArticleDOI

Generative Image Inpainting with Contextual Attention

TL;DR: Yu et al. as discussed by the authors proposed a new deep generative model-based approach which can not only synthesize novel image structures but also explicitly utilize surrounding image features as references during network training to make better predictions.
References
More filters
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Journal ArticleDOI

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

TL;DR: This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units that are shown to make weight adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement tasks and certain limited forms of delayed-reInforcement tasks, and they do this without explicitly computing gradient estimates.
Posted Content

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

TL;DR: This work introduces a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrates that they are a strong candidate for unsupervised learning.
Posted Content

Improved Techniques for Training GANs

TL;DR: In this article, the authors present a variety of new architectural features and training procedures that apply to the generative adversarial networks (GANs) framework and achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN.
Proceedings Article

Categorical Reparameterization with Gumbel-Softmax

TL;DR: Gumbel-Softmax as mentioned in this paper replaces the non-differentiable samples from a categorical distribution with a differentiable sample from a novel Gumbel softmax distribution, which has the essential property that it can be smoothly annealed into the categorical distributions.
Related Papers (5)