scispace - formally typeset
Open AccessProceedings Article

Improved training of wasserstein GANs

TLDR
The authors proposed to penalize the norm of the gradient of the critic with respect to its input to improve the training stability of Wasserstein GANs and achieve stable training of a wide variety of GAN architectures with almost no hyperparameter tuning.
Abstract
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only poor samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models with continuous generators. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

PointFlow: 3D Point Cloud Generation With Continuous Normalizing Flows

TL;DR: PointFlow as discussed by the authors proposes a principled probabilistic framework to generate 3D point clouds by modeling them as a distribution of distributions, where the first level is the distribution of shapes and the second level is given a shape.
Journal ArticleDOI

Inverting the Generator of a Generative Adversarial Network

TL;DR: This paper introduces a technique, inversion, to project data samples, specifically images, to the latent space using a pretrained GAN, and demonstrates how the proposed inversion technique may be used to quantitatively compare the performance of various GAN models trained on three image data sets.
Proceedings ArticleDOI

Image Super-Resolution by Neural Texture Transfer

TL;DR: An end-to-end deep model which enriches HR details by adaptively transferring the texture from Ref images according to their textural similarity is designed, which facilitates multi-scale neural transfer that allows the model to benefit more from those semantically related Ref patches, and gracefully degrade to SISR performance on the least relevant Ref inputs.
Book ChapterDOI

In-Domain GAN Inversion for Real Image Editing

TL;DR: In this article, a domain-guided encoder is proposed to project a given image to the native latent space of GANs and then a domain regularized optimization is performed to fine-tune the code produced by the encoder.
Journal ArticleDOI

CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE)

TL;DR: Wang et al. as mentioned in this paper proposed a semi-supervised deep learning approach to recover high-resolution (HR) CT images from low resolution (LR) counterparts by enforcing the cycle-consistency in terms of the Wasserstein distance.
References
More filters
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Journal ArticleDOI

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

TL;DR: This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units that are shown to make weight adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement tasks and certain limited forms of delayed-reInforcement tasks, and they do this without explicitly computing gradient estimates.
Posted Content

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

TL;DR: This work introduces a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrates that they are a strong candidate for unsupervised learning.
Posted Content

Improved Techniques for Training GANs

TL;DR: In this article, the authors present a variety of new architectural features and training procedures that apply to the generative adversarial networks (GANs) framework and achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN.
Proceedings Article

Categorical Reparameterization with Gumbel-Softmax

TL;DR: Gumbel-Softmax as mentioned in this paper replaces the non-differentiable samples from a categorical distribution with a differentiable sample from a novel Gumbel softmax distribution, which has the essential property that it can be smoothly annealed into the categorical distributions.
Related Papers (5)