scispace - formally typeset
Journal ArticleDOI

Improving enzymes by using them in organic solvents

Alexander M. Klibanov
- 11 Jan 2001 - 
- Vol. 409, Iss: 6817, pp 241-246
Reads0
Chats0
TLDR
The technological utility of enzymes can be enhanced greatly by using them in organic solvents rather than their natural aqueous reaction media, and they have found numerous potential applications, some of which are already commercialized.
Abstract
The technological utility of enzymes can be enhanced greatly by using them in organic solvents rather than their natural aqueous reaction media. Studies over the past 15 years have revealed not only that this change in solvent is feasible, but also that in such seemingly hostile environments enzymes can catalyse reactions impossible in water, become more stable, and exhibit new behaviour such as 'molecular memory'. Of particular importance has been the discovery that enzymatic selectivity, including substrate, stereo-, regio- and chemoselectivity, can be markedly affected, and sometimes even inverted, by the solvent. Enzyme-catalysed reactions in organic solvents, and even in supercritical fluids and the gas phase, have found numerous potential applications, some of which are already commercialized.

read more

Citations
More filters
Journal ArticleDOI

Lipase-catalyzed aza-Michael reaction on acrylate derivatives.

TL;DR: Under the optimal conditions it was found that Pseudomonas stutzeri lipase and Chromobacterium viscosum lipase showed the highest selectivity for the aza-Michael addition to substituted alkyl acrylates.
Patent

Process for producing glutamate derivatives

TL;DR: In this article, a process for producing efficiently glutamic acid derivatives (including salts thereof) such as monatin by converting a substituted α-keto acid of formula (1) into a glutamamic acid derivative of formula(2) in the presence of an enzyme catalyzing conversion of the same.
Journal ArticleDOI

Pickering stabilized peptide gel particles as tunable microenvironments for biocatalysis.

TL;DR: The combination of a tunable chemical environment in gel phase and Pickering stabilization described here is expected to prove useful for areas where proteins are to be exploited in technological contexts such as biocatalysis and also in other areas where protein performance and activity are important, such as biosensors and bioinspired solar fuel devices.
Journal ArticleDOI

The solvent influence on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterification.

TL;DR: It was revealed that relatively hydrophilic solvent such as t-butanol was an ideal solvent for Novozym 435 catalyzed 1,3-diolein synthesis through esterification of oleic acid with glycerol.
Journal ArticleDOI

Purification and biological characterization of a halophilic thermostable protease from Haloferax lucentensis VKMM 007

TL;DR: The proteolytic activity remained stable or only marginally inhibited in the presence of various polar and non-polar solvents, surfactants and reducing agents thus emphasizing the biotechnological potential of this novel halophilic protease.
References
More filters
Book

Principles of Biochemistry

TL;DR: The third edition, coming ten years after the first, emphasizes both the flowering of biochemical research and the prodigious effort by busy teachers and scientists to keep up to date this popular text and reference.
Book

Hydrogen Bonding in Biological Structures

TL;DR: In this article, the van der Waals Radii cut-off criterion is used to define the strong and weak hydrogen-bond configurations, as well as the relationship between two-center and three-center hydrogen bonds.
Book

Structure and Mechanism in Protein Science

TL;DR: The three-dimensional structure of proteins chemical catalysis the basic equations of enzyme kinetics measurement and magnitude of enzymatic rate constants the pH dependence of enzyme catalysis practical kinetics detection of intermediaries in reactions by kinetics stereochemistry of enzymes reactions active-site-directed and enzyme-activated irreversible inhibitors - affinity labels and suicide inhibitors conformational change, allosteric regulation, motors and work forces between molecules, and enzymesubstrate binding energies enzyme-substrate complementarity and the use of binding energy in catalysis specificity and editing mechanisms recombinant DNA technology case studies of enzyme
BookDOI

Structure and Mechanism in Protein Science : a guide to enzyme catalysis and protein folding

TL;DR: The three-dimensional structure of proteins chemical catalysis, kinetics measurement and magnitude of enzymatic rate constants, and the use of binding energy in catalysis specificity and editing mechanisms are studied.
Related Papers (5)