scispace - formally typeset
Journal ArticleDOI

Improving enzymes by using them in organic solvents

Alexander M. Klibanov
- 11 Jan 2001 - 
- Vol. 409, Iss: 6817, pp 241-246
Reads0
Chats0
TLDR
The technological utility of enzymes can be enhanced greatly by using them in organic solvents rather than their natural aqueous reaction media, and they have found numerous potential applications, some of which are already commercialized.
Abstract
The technological utility of enzymes can be enhanced greatly by using them in organic solvents rather than their natural aqueous reaction media. Studies over the past 15 years have revealed not only that this change in solvent is feasible, but also that in such seemingly hostile environments enzymes can catalyse reactions impossible in water, become more stable, and exhibit new behaviour such as 'molecular memory'. Of particular importance has been the discovery that enzymatic selectivity, including substrate, stereo-, regio- and chemoselectivity, can be markedly affected, and sometimes even inverted, by the solvent. Enzyme-catalysed reactions in organic solvents, and even in supercritical fluids and the gas phase, have found numerous potential applications, some of which are already commercialized.

read more

Citations
More filters
Journal ArticleDOI

Highly stereoselective direct aldol reactions catalyzed by (S)-NOBIN-l-prolinamide

TL;DR: Acetone led to the aldol products in up to 93% ee, while cyclic ketones furnished the anti -aldols in moderate to high yield, excellent diastereoselectivity and high ee.
Journal ArticleDOI

An organic solvent-tolerant protease from Pseudomonas aeruginosa strain K: Nutritional factors affecting protease production

TL;DR: Significant protease production was observed with sodium nitrate as a sole nitrogen source however, ammonium nitrate completely inhibit it and addition of metal ions such as K , Mg 2+ and Ca 2+ maximized the enzyme production.
Journal ArticleDOI

Metabolism and motility in prebiotic structures.

TL;DR: Such motile agents would be capable of finding resources while escaping equilibrium and sustaining themselves through an internal metabolism, thus providing a working chemical model for a possible origin of life.
Journal ArticleDOI

Catalytic activity of laccases in aqueous solutions of ionic liquids

TL;DR: The ionic liquids, [bmim]Br and [BMim][N(CN)2] (where BMim = 1-butyl-3-methylimidazolium), stimulated laccase-catalysed oxidation of catechol when provided at concentrations between 10-20% and 50-60% (v/v) in water, respectively as discussed by the authors.
References
More filters
Book

Principles of Biochemistry

TL;DR: The third edition, coming ten years after the first, emphasizes both the flowering of biochemical research and the prodigious effort by busy teachers and scientists to keep up to date this popular text and reference.
Book

Hydrogen Bonding in Biological Structures

TL;DR: In this article, the van der Waals Radii cut-off criterion is used to define the strong and weak hydrogen-bond configurations, as well as the relationship between two-center and three-center hydrogen bonds.
Book

Structure and Mechanism in Protein Science

TL;DR: The three-dimensional structure of proteins chemical catalysis the basic equations of enzyme kinetics measurement and magnitude of enzymatic rate constants the pH dependence of enzyme catalysis practical kinetics detection of intermediaries in reactions by kinetics stereochemistry of enzymes reactions active-site-directed and enzyme-activated irreversible inhibitors - affinity labels and suicide inhibitors conformational change, allosteric regulation, motors and work forces between molecules, and enzymesubstrate binding energies enzyme-substrate complementarity and the use of binding energy in catalysis specificity and editing mechanisms recombinant DNA technology case studies of enzyme
BookDOI

Structure and Mechanism in Protein Science : a guide to enzyme catalysis and protein folding

TL;DR: The three-dimensional structure of proteins chemical catalysis, kinetics measurement and magnitude of enzymatic rate constants, and the use of binding energy in catalysis specificity and editing mechanisms are studied.
Related Papers (5)