scispace - formally typeset
Open AccessJournal ArticleDOI

Indirect excitons in van der Waals heterostructures at room temperature

Reads0
Chats0
TLDR
Indirect excitons (IXs) in van der Waals transition-metal dichalcogenide (TMD) heterostructures are characterized by a high binding energy making them stable at room temperature and giving the opportunity for exploring fundamental phenomena in excitonic systems as mentioned in this paper.
Abstract
Indirect excitons (IXs) in van der Waals transition-metal dichalcogenide (TMD) heterostructures are characterized by a high binding energy making them stable at room temperature and giving the opportunity for exploring fundamental phenomena in excitonic systems and developing excitonic devices operational at high temperatures. We present the observation of IXs at room temperature in van der Waals TMD heterostructures based on monolayers of MoS$_2$ separated by atomically thin hexagonal boron nitride. The IXs realized in the TMD heterostructure have lifetimes orders of magnitude longer than lifetimes of direct excitons in single-layer TMD, and their energy is gate controlled.

read more

Citations
More filters
Patent

Excitonic device and operating methods thereof

TL;DR: In this article, the authors present an excitonic device including at least one heterostructure comprising or consisting solely of a first two-dimensional material or layer and a second 2D layer.
References
More filters
Journal ArticleDOI

Van der Waals heterostructures

TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Journal ArticleDOI

Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS 2

TL;DR: Strong but unconventional electron-hole interactions are expected to be ubiquitous in atomically thin materials using a microscopic theory in which the nonlocal nature of the effective dielectric screening modifies the functional form of the Coulomb interaction.
Journal ArticleDOI

Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures

TL;DR: It is shown that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled two-dimensional layers, which can enable novel two- dimensional devices for optoelectronics and light harvesting.
Journal ArticleDOI

Observation of Long-Lived Interlayer Excitons in Monolayer MoSe2-WSe2 Heterostructures

TL;DR: This work demonstrates optical pumping of interlayer electric polarization, which may provoke further exploration of inter layer exciton condensation, as well as new applications in two-dimensional lasers, light-emitting diodes and photovoltaic devices.
Related Papers (5)