scispace - formally typeset
Open AccessJournal ArticleDOI

Marker-based estimation of heritability in immortal populations.

Reads0
Chats0
TLDR
Mixed models at the individual plant or plot level produced more realistic heritability estimates, and for simulated traits standard errors were up to 13 times smaller, and genomic prediction was improved by using these mixed models, with up to a 49% increase in accuracy.
Abstract
Heritability is a central parameter in quantitative genetics, from both an evolutionary and a breeding perspective. For plant traits heritability is traditionally estimated by comparing within- and between-genotype variability. This approach estimates broad-sense heritability and does not account for different genetic relatedness. With the availability of high-density markers there is growing interest in marker-based estimates of narrow-sense heritability, using mixed models in which genetic relatedness is estimated from genetic markers. Such estimates have received much attention in human genetics but are rarely reported for plant traits. A major obstacle is that current methodology and software assume a single phenotypic value per genotype, hence requiring genotypic means. An alternative that we propose here is to use mixed models at the individual plant or plot level. Using statistical arguments, simulations, and real data we investigate the feasibility of both approaches and how these affect genomic prediction with the best linear unbiased predictor and genome-wide association studies. Heritability estimates obtained from genotypic means had very large standard errors and were sometimes biologically unrealistic. Mixed models at the individual plant or plot level produced more realistic estimates, and for simulated traits standard errors were up to 13 times smaller. Genomic prediction was also improved by using these mixed models, with up to a 49% increase in accuracy. For genome-wide association studies on simulated traits, the use of individual plant data gave almost no increase in power. The new methodology is applicable to any complex trait where multiple replicates of individual genotypes can be scored. This includes important agronomic crops, as well as bacteria and fungi.

read more

Citations
More filters
Journal Article

Human biochemical genetics

Grüneberg H
- 01 Jul 1960 - 
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Journal ArticleDOI

Genomic prediction of maize yield across European environmental conditions

TL;DR: A whole-genome regression approach for the genotypic sensitivities led to accurate prediction of yield under genotype × environment interaction in a wide range of environmental scenarios, outperforming a benchmark approach.
Journal ArticleDOI

Genetic Components of Root Architecture Remodeling in Response to Salt Stress.

TL;DR: The natural variation among 347 Arabidopsis thaliana accessions in root system architecture (RSA) is described and the traits with highest natural variation in their response to salt are identified and provided a better understanding of effective RSA remodeling responses.
References
More filters
Journal Article

Human biochemical genetics

Grüneberg H
- 01 Jul 1960 - 
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Journal ArticleDOI

Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls

Paul Burton, +195 more
- 07 Jun 2007 - 
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Journal ArticleDOI

GCTA: a tool for genome-wide complex trait analysis.

TL;DR: The GCTA software is a versatile tool to estimate and partition complex trait variation with large GWAS data sets and focuses on the function of estimating the variance explained by all the SNPs on the X chromosome and testing the hypotheses of dosage compensation.
Journal ArticleDOI

TASSEL: software for association mapping of complex traits in diverse samples

TL;DR: TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) implements general linear model and mixed linear model approaches for controlling population and family structure and allows for linkage disequilibrium statistics to be calculated and visualized graphically.
Related Papers (5)
Trending Questions (1)
What is heritability in plants?

Heritability in plants is traditionally estimated by comparing within- and between-genotype variability, with growing interest in marker-based estimates using mixed models to account for genetic relatedness.