scispace - formally typeset
Journal ArticleDOI

Metal-free catalysts for oxygen reduction reaction.

TLDR
This paper presents a probabilistic procedure for estimating the polymethine content of carbon dioxide using a straightforward two-step procedure, and shows good results in both the stationary and the liquid phase.
Abstract
Liming Dai,*,†,‡ Yuhua Xue,†,‡ Liangti Qu,* Hyun-Jung Choi, and Jong-Beom Baek* †Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Department of Chemistry, School of Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China School of Energy and Chemical Engineering/Center for Dimension-Controllable Covalent Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon, Ulsan, 689-798, South Korea

read more

Citations
More filters
Journal ArticleDOI

Multifunctional Carbon-Based Metal-Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution.

TL;DR: The multifunctional electrocatalytic activities originate from a synergistic effect of the N, S heteroatom doping and unique SHG architecture, which provide a large surface area and efficient pathways for electron and electrolyte/reactant transports.
Journal ArticleDOI

Nanocarbon for Oxygen Reduction Electrocatalysis: Dopants, Edges, and Defects.

TL;DR: The activity origins of nanocarbon-based ORR electro-catalysts are comprehensively reviewed and correlated, considering the dopants, edges, and defects.
Journal ArticleDOI

Metal-Free Single Atom Catalyst for N2 Fixation Driven by Visible Light.

TL;DR: In this article, a metal-free photocatalyst for solar-driven nitrogen reduction was proposed by using extensive first-principles calculations, which showed that gas phase N2 can be efficiently reduced into ammonia using B/g-C3N4 through the enzymatic mechanism with a record low onset potential (0.20 V).
Journal ArticleDOI

Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications

TL;DR: This review encompasses the approaches and the wide range of methodologies that have been employed over the last five years in the preparation and functionalisation of nanoporous carbon materials via incorporation of metals, non-metal heteroatoms, multiple heteroatOMs, and various surface functional groups that mostly dictate their place in a widerange of practical applications.
Journal ArticleDOI

Progress in Research into 2D Graphdiyne-Based Materials

TL;DR: GDY has recently revealed the practicality of GDY as catalyst; in rechargeable batteries, solar cells, electronic devices, magnetism, detector, biomedicine, and therapy; and for gas separation as well as water purification.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Helical microtubules of graphitic carbon

Sumio Iijima
- 01 Nov 1991 - 
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Related Papers (5)