scispace - formally typeset
Journal ArticleDOI

Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.

TLDR
In this article, a review of the active site and catalytic mechanism of Metallo-β-lactamases (MBLs) is presented, and the success of MBLs in conferring resistance to carbapenems, penicillins, and cephalosporins.
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.

read more

Citations
More filters
Journal ArticleDOI

β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates.

TL;DR: This tutorial-style review of the β-lactam antibiotics provides an overview of their covalent interactions with their target proteins and resistance mechanisms, and introduces the l,d-transpeptidases, a group of bacterial enzymes involved in peptidoglycan synthesis which are also targeted by β- lactams.
Journal ArticleDOI

Metallo-β-lactamases and a tug-of-war for the available zinc at the host–pathogen interface

TL;DR: Metallo-β-lactamases (MBLs) are zinc-dependent hydrolases that inactivate virtually all β lactam antibiotics as discussed by the authors , and metal starvation is a driving force acting on MBL evolution.
Journal ArticleDOI

Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm.

TL;DR: In this paper , the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins are discussed.
References
More filters
Journal ArticleDOI

Structural Insights into the Subclass B3 Metallo-β-Lactamase SMB-1 and the Mode of Inhibition by the Common Metallo-β-Lactamase Inhibitor Mercaptoacetate

TL;DR: It is found that SMB-1 reserves a space in the active site to accommodate β-lactam, even with a bulky R1 side chain, due to a loss of amino acid residues corresponding to F31 and L226 of BJP-1, which protrude into theactive site to prevent β- lactam from binding.
Journal ArticleDOI

A novel ligand bound ABC transporter, LolCDE, provides insights into the molecular mechanisms underlying membrane detachment of bacterial lipoproteins.

TL;DR: It is reported here that ligand‐bound LolCDE can be purified from the inner membrane in the absence of ATP, and is the first example of an ABC transporter purified with tightly bound native substrates.
Journal ArticleDOI

Cephalosporins 1945-1986.

TL;DR: Genetic engineering has now begun to throw light on the nature of the enzymes that are involved in the biosynthesis of penicillins and cephalosporins, and x-ray crystallography may soon provide detailed 3-dimensional pictures of some of the bacterial enzymes with which the active β -lactam ring reacts.
Journal ArticleDOI

Challenges in the Development of a Thiol-Based Broad-Spectrum Inhibitor for Metallo-β-Lactamases

TL;DR: The synthesis and biochemical characterization of thiol-based MBL inhibitors are reported and the challenges behind the development are highlighted, which exhibit good in vitro activity toward a broad spectrum of MBLs, selectivity against human off-targets, and reasonable activity against clinical isolates.
Journal ArticleDOI

Structures bounded by directly-oriented members of the IS26 family are pseudo-compound transposons.

TL;DR: It is concluded that the transposon-like structures are not compound (or composite) transposons and the nomenclature for them should be revised and the term "pseudo compoundTransposon" (PCT), first coined in 1989, should be used to describe those structures where the IS are in direct orientation.
Related Papers (5)