scispace - formally typeset
Search or ask a question

Showing papers in "Antimicrobial Agents and Chemotherapy in 2013"


Journal ArticleDOI
TL;DR: The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences.
Abstract: The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.

1,444 citations


Journal ArticleDOI
TL;DR: Overall, higher troughs (≥15 mg/liter) were associated with increased odds of nephrotoxicity, and the collective literature indicates that an exposure-nephrotoxicity relationship for vancomycin exists.
Abstract: In an effort to maximize outcomes, recent expert guidelines recommend more-intensive vancomycin dosing schedules to maintain vancomycin troughs between 15 and 20 mg/liter. The widespread use of these more-intensive regimens has been associated with an increase in vancomycin-induced nephrotoxicity reports. The purpose of this systematic literature review is to determine the nephrotoxicity potential of maintaining higher troughs in clinical practice. All studies pertaining to vancomycin-induced nephrotoxicity between 1996 and April 2012 were identified from PubMed, Embase, Cochrane Controlled Trial Registry, and Medline databases and analyzed according to Cochrane guidelines. Of the initial 240 studies identified, 38 were reviewed, and 15 studies met the inclusion criteria. Overall, higher troughs (≥15 mg/liter) were associated with increased odds of nephrotoxicity (odds ratio [OR], 2.67; 95% confidence interval [CI], 1.95 to 3.65) relative to lower troughs of <15 mg/liter. The relationship between a trough of ≥15 mg/liter and nephrotoxicity persisted when the analysis was restricted to studies that examined only initial trough concentrations (OR, 3.12; 95% CI, 1.81 to 5.37). The relationship between troughs of ≥15 mg/liter and nephrotoxicity persisted after adjustment for covariates known to independently increase the risk of a nephrotoxicity event. An incremental increase in nephrotoxicity was also observed with longer durations of vancomycin administration. Vancomycin-induced nephrotoxicity was reversible in the majority of cases, with short-term dialysis required only in 3% of nephrotoxic episodes. The collective literature indicates that an exposure-nephrotoxicity relationship for vancomycin exists. The probability of a nephrotoxic event increased as a function of the trough concentration and duration of therapy.

485 citations


Journal ArticleDOI
TL;DR: Avoidance of high- risk antibiotics in favor of lower-risk antibiotics (such as penicillins, macrolides, and tetracyclines) may help reduce the incidence of CDI.
Abstract: The rising incidence of Clostridium difficile infection (CDI) could be reduced by lowering exposure to high-risk antibiotics. The objective of this study was to determine the association between antibiotic class and the risk of CDI in the community setting. The EMBASE and PubMed databases were queried without restriction to time period or language. Comparative observational studies and randomized controlled trials (RCTs) considering the impact of exposure to antibiotics on CDI risk among nonhospitalized populations were considered. We estimated pooled odds ratios (OR) for antibiotic classes using random-effect meta-analysis. Our search criteria identified 465 articles, of which 7 met inclusion criteria; all were observational studies. Five studies considered antibiotic risk relative to no antibiotic exposure: clindamycin (OR = 16.80; 95% confidence interval [95% CI], 7.48 to 37.76), fluoroquinolones (OR = 5.50; 95% CI, 4.26 to 7.11), and cephalosporins, monobactams, and carbapenems (CMCs) (OR = 5.68; 95% CI, 2.12 to 15.23) had the largest effects, while macrolides (OR = 2.65; 95% CI, 1.92 to 3.64), sulfonamides and trimethoprim (OR = 1.81; 95% CI, 1.34 to 2.43), and penicillins (OR = 2.71; 95% CI, 1.75 to 4.21) had lower associations with CDI. We noted no effect of tetracyclines on CDI risk (OR = 0.92; 95% CI, 0.61 to 1.40). In the community setting, there is substantial variation in the risk of CDI associated with different antimicrobial classes. Avoidance of high-risk antibiotics (such as clindamycin, CMCs, and fluoroquinolones) in favor of lower-risk antibiotics (such as penicillins, macrolides, and tetracyclines) may help reduce the incidence of CDI.

452 citations


Journal ArticleDOI
TL;DR: Findings confirmed the MgrB regulatory role in K. pneumoniae and were in agreement with the known association between upregulation of the PhoQ/PhoP system and activation of the pmrHFIJKLM operon, which eventually leads to resistance to polymyxins by modification of the lipopolysaccharide target.
Abstract: Colistin is one of the few agents that retain activity against extensively drug-resistant strains of Klebsiella pneumoniae producing KPC-type carbapenemases (KPC-KP). However, resistance to colistin is increasingly reported among KPC-KP. Comparative genomic analysis of a pair of sequential KPC-KP isolates from the same patient including a colistin-susceptible isolate (KKBO-1) and a colistin-resistant isolate (KKBO-4) selected after colistin exposure revealed that insertional inactivation of the mgrB gene, encoding a negative regulator of the PhoQ/PhoP signaling system, is a genetic mechanism for acquired colistin resistance. The role of mgrB inactivation in acquired colistin resistance was confirmed by complementation experiments with wild-type mgrB, which restored colistin susceptibility in KKBO-4, and by construction of an mgrB deletion mutant from KKBO-1, which exhibited a colistin-resistant phenotype. Insertional mgrB inactivation was also detected in 60% of colistin-resistant mutants selected from KKBO-1 in vitro, following plating on colistin-containing medium, confirming the role (although not unique) of this mechanism in the emergence of acquired colistin resistance. In colistin-resistant mutants carrying insertional inactivation or deletion of the mgrB gene, upregulated transcription of phoP, phoQ, and pmrK (which is part of the pmrHFIJKLM operon) was detected. These findings confirmed the MgrB regulatory role in K. pneumoniae and were in agreement with the known association between upregulation of the PhoQ/PhoP system and activation of the pmrHFIJKLM operon, which eventually leads to resistance to polymyxins by modification of the lipopolysaccharide target.

299 citations


Journal ArticleDOI
TL;DR: Using chemical pretreatments, it is demonstrated that bacterial persistence results from halted protein synthesis and from environmental cues.
Abstract: Biofilms are associated with a wide variety of bacterial infections and pose a serious problem in clinical medicine due to their inherent resilience to antibiotic treatment. Within biofilms, persister cells comprise a small bacterial subpopulation that exhibits multidrug tolerance to antibiotics without undergoing genetic change. The low frequency of persister cell formation makes it difficult to isolate and study persisters, and bacterial persistence is often attributed to a quiescent metabolic state induced by toxins that are regulated through toxin-antitoxin systems. Here we mimic toxins via chemical pretreatments to induce high levels of persistence (10 to 100%) from an initial population of 0.01%. Pretreatment of Escherichia coli with (i) rifampin, which halts transcription, (ii) tetracycline, which halts translation, and (iii) carbonyl cyanide m -chlorophenylhydrazone, which halts ATP synthesis, all increased persistence dramatically. Using these compounds, we demonstrate that bacterial persistence results from halted protein synthesis and from environmental cues.

288 citations


Journal ArticleDOI
TL;DR: It is demonstrated that exposure to lysed polymorphonuclear leukocytes, which is thought to be a source of extracellular DNA at sites of infections, increases the tolerance of P. aeruginosa biofilms toward aminoglycosides.
Abstract: Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, we provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release-deficient P. aeruginosa quorum-sensing mutant are more susceptible to aminoglycoside treatment than wild-type biofilms but become rescued from the detrimental action of aminoglycosides upon supplementation with exogenous DNA. Furthermore, we demonstrate that exposure to lysed polymorphonuclear leukocytes, which are thought to be a source of extracellular DNA at sites of infections, increases the tolerance of P. aeruginosa biofilms toward aminoglycosides. Although biofilm-associated aminoglycoside tolerance recently has been linked to extracellular DNA-mediated activation of the pmr genes, we demonstrate that the aminoglycoside tolerance mediated by the presence of extracellular DNA is not caused by activation of the pmr genes in our P. aeruginosa biofilms but rather by a protective shield effect of the extracellular DNA.

280 citations


Journal ArticleDOI
TL;DR: In this first study of an Fc-modified monoclonal antibody in humans, motavizumab-YTE was well tolerated and exhibited an extended half-life of up to 100 days, as shown by RSV neutralizing activity that persisted for 240 days with motavIZumab -YTE.
Abstract: The study objective was to evaluate the pharmacokinetics (PK), antidrug antibody (ADA), and safety of motavizumab-YTE (motavizumab with amino acid substitutions M252Y/S254T/T256E [YTE]), an Fc-modified anti-respiratory syncytial virus (RSV) monoclonal antibody. Healthy adults (n = 31) were randomized to receive a single intravenous (i.v.) dose of motavizumab-YTE or motavizumab (0.3, 3, 15, or 30 mg/kg) and followed for 240 days. Clearance of motavizumab-YTE was significantly lower (71% to 86%) and the half-life (t1/2) was 2- to 4-fold longer than with motavizumab. However, similar peak concentrations and volume-of-distribution values, indicative of similar distribution properties, were seen at all dose levels. The sustained serum concentrations of motavizumab-YTE were fully functional, as shown by RSV neutralizing activity that persisted for 240 days with motavizumab-YTE versus 90 days postdose for motavizumab. Safety and incidence of ADA were comparable between groups. In this first study of an Fc-modified monoclonal antibody in humans, motavizumab-YTE was well tolerated and exhibited an extended half-life of up to 100 days. (This study has been registered at ClinicalTrials.gov under registration no. NCT00578682.).

262 citations


Journal ArticleDOI
TL;DR: Growth as a biofilm facilitates the emergence of antibiotic resistance by mutation in Staphylococcus aureus and it is demonstrated that biofilm growth of this species also dramatically increases horizontal transfer of plasmid-borne antibiotic resistance determinants by conjugation/mobilization.
Abstract: Growth as a biofilm facilitates the emergence of antibiotic resistance by mutation in Staphylococcus aureus. Here we demonstrate that biofilm growth of this species also dramatically increases horizontal transfer of plasmid-borne antibiotic resistance determinants by conjugation/mobilization and that standard laboratory practices to induce conjugation in staphylococci achieve optimal efficiency owing to the presence of a biofilm.

257 citations


Journal ArticleDOI
TL;DR: The reduced susceptibility to artemisinin in Pailin appears to be associated with an altered in vitro phenotype of ring stages from Pailsin in the RSA, which is associated with a clear-cut geographic dichotomy.
Abstract: The declining efficacy of artemisinin derivatives against Plasmodium falciparum in western Cambodia is a major concern. The knowledge gap in the understanding of the mechanisms involved hampers designing monitoring tools. Here, we culture-adapted 20 isolates from Pailin and Ratanakiri (areas of artemisinin resistance and susceptibility in western and eastern Cambodia, respectively) and studied their in vitro response to dihydroartemisinin. No significant difference between the two sets of isolates was observed in the classical isotopic test. However, a 6-h pulse exposure to 700 nM dihydroartemisinin (ring-stage survival assay -RSA]) revealed a clear-cut geographic dichotomy. The survival rate of exposed ring-stage parasites (ring stages) was 17-fold higher in isolates from Pailin (median, 13.5%) than in those from Ratanakiri (median, 0.8%), while exposed mature stages were equally and highly susceptible (0.6% and 0.7%, respectively). Ring stages survived drug exposure by cell cycle arrest and resumed growth upon drug withdrawal. The reduced susceptibility to artemisinin in Pailin appears to be associated with an altered in vitro phenotype of ring stages from Pailin in the RSA.

242 citations


Journal ArticleDOI
TL;DR: Even brief exposure to imipenem is a major risk factor for IR-GNB carriage in intensive care patients, according to a case control study performed.
Abstract: Intestinal flora contains a reservoir of Gram-negative bacilli (GNB) resistant to cephalosporins, which are potentially pathogenic for intensive care unit (ICU) patients; this has led to increasing use of carbapenems. The emergence of carbapenem resistance is a major concern for ICUs. Therefore, in this study, we aimed to assess the intestinal carriage of imipenem-resistant GNB (IR-GNB) in intensive care patients. For 6 months, 523 consecutive ICU patients were screened for rectal IR-GNB colonization upon admission and weekly thereafter. The phenotypes and genotypes of all isolates were determined, and a case control study was performed to identify risk factors for colonization. The IR-GNB colonization rate increased regularly from 5.6% after 1 week to 58.6% after 6 weeks in the ICU. In all, 56 IR-GNB strains were collected from 50 patients: 36 Pseudomonas aeruginosa strains, 12 Stenotrophomonas maltophilia strains, 6 Enterobacteriaceae strains, and 2 Acinetobacter baumannii strains. In P. aeruginosa, imipenem resistance was due to chromosomally encoded resistance (32 strains) or carbapenemase production (4 strains). In the Enterobacteriaceae strains, resistance was due to AmpC cephalosporinase and/or extended-spectrum β-lactamase production with porin loss. Genomic comparison showed that the strains were highly diverse, with 8 exceptions (4 VIM-2 carbapenemase-producing P. aeruginosa strains, 2 Klebsiella pneumoniae strains, and 2 S. maltophilia strains). The main risk factor for IR-GNB colonization was prior imipenem exposure. The odds ratio for colonization was already as high as 5.9 (95% confidence interval [95% CI], 1.5 to 25.7) after 1 to 3 days of exposure and increased to 7.8 (95% CI, 2.4 to 29.8) thereafter. In conclusion, even brief exposure to imipenem is a major risk factor for IR-GNB carriage.

232 citations


Journal ArticleDOI
TL;DR: The results suggest that bacteriocins that form stable pores on biofilm cells are highly potent for the treatment of MRSA biofilm infections.
Abstract: Control of biofilms formed by microbial pathogens is an important subject for medical researchers, since the development of biofilms on foreign-body surfaces often causes biofilm-associated infections in patients with indwelling medical devices. The present study examined the effects of different kinds of bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by certain bacteria, on biofilms formed by a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). The activities and modes of action of three bacteriocins with different structures (nisin A, lacticin Q, and nukacin ISK-1) were evaluated. Vancomycin, a glycopeptide antibiotic used in the treatment of MRSA infections, showed bactericidal activity against planktonic cells but not against biofilm cells. Among the tested bacteriocins, nisin A showed the highest bactericidal activity against both planktonic cells and biofilm cells. Lacticin Q also showed bactericidal activity against both planktonic cells and biofilm cells, but its activity against biofilm cells was significantly lower than that of nisin A. Nukacin ISK-1 showed bacteriostatic activity against planktonic cells and did not show bactericidal activity against biofilm cells. Mode-of-action studies indicated that pore formation leading to ATP efflux is important for the bactericidal activity against biofilm cells. Our results suggest that bacteriocins that form stable pores on biofilm cells are highly potent for the treatment of MRSA biofilm infections.

Journal ArticleDOI
TL;DR: It is found that bacteria that are rapidly growing prior to antibiotic exposure can give rise to persisters and that a lack of replication or low metabolic activity prior to antibiotics treatment simply increases the likelihood that a cell is a persister.
Abstract: The antibiotic tolerances of bacterial persisters have been attributed to transient dormancy. While persisters have been observed to be growth inhibited prior to antibiotic exposure, we sought to determine whether such a trait was essential to the phenotype. Furthermore, we sought to provide direct experimental evidence of the persister metabolic state so as to determine whether the common assumption of metabolic inactivity was valid. Using fluorescence-activated cell sorting (FACS), a fluorescent indicator of cell division, a fluorescent measure of metabolic activity, and persistence assays, we found that bacteria that are rapidly growing prior to antibiotic exposure can give rise to persisters and that a lack of replication or low metabolic activity prior to antibiotic treatment simply increases the likelihood that a cell is a persister. Interestingly, a lack of significant growth or metabolic activity does not guarantee persistence, as the majority of even "dormant" subpopulations (>99%) were not persisters. These data suggest that persistence is far more complex than dormancy and point to additional characteristics needed to define the persister phenotype.

Journal ArticleDOI
TL;DR: The Carba NP test confirmed the 100% specificity and positive predictive value of the test, but the sensitivity and negative predictive value were lower than expected and were associated with mucoid strains or linked to enzymes with low carbapenemase activity.
Abstract: The Carba NP test was evaluated against a panel of 244 carbapenemase- and non-carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa isolates. We confirmed the 100% specificity and positive predictive value of the test, but the sensitivity and negative predictive value were 72.5% and 69.2%, respectively, and increased to 80% and 77.3%, respectively, using a more concentrated bacterial extract. False-negative results were associated with mucoid strains or linked to enzymes with low carbapenemase activity, particularly OXA-48-like, which has emerged globally in enterobacteria.

Journal ArticleDOI
TL;DR: The hypothesis that a higher area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) may be necessary to achieve clinical cure in patients with hospital-acquired pneumonia is supported.
Abstract: In a previous phase 3 study, the cure rates that occurred in patients with hospital-acquired pneumonia treated with tigecycline at the approved dose were lower than those seen with patients treated with imipenem and cilastatin (imipenem/cilastatin). We hypothesized that a higher dose of tigecycline is necessary in patients with hospital-acquired pneumonia. This phase 2 study compared the safety and efficacy of two higher doses of tigecycline with imipenem/cilastatin in subjects with hospital-acquired pneumonia. Subjects with hospital-acquired pneumonia were randomized to receive one of two doses of tigecycline (150 mg followed by 75 mg every 12 h or 200 mg followed by 100 mg every 12 h) or 1 g of imipenem/cilastatin every 8 h. Empirical adjunctive therapy was administered for initial coverage of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa infection, depending on the randomization regimen. Clinical response, defined as cure, failure of treatment, or indeterminate outcome, was assessed 10 to 21 days after the last day of therapy. In the clinically evaluable population, clinical cure with tigecycline 100 mg (17/20, 85.0%) was numerically higher than with tigecycline 75 mg (16/23, 69.6%) and imipenem/cilastatin (18/24, 75.0%). No new safety signals with the high-dose tigecycline were identified. A numerically higher clinical response was observed with the 100-mg dose of tigecycline. This supports our hypothesis that a higher area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) may be necessary to achieve clinical cure in patients with hospital-acquired pneumonia. Further studies are necessary. (The ClinicalTrials.gov identifier for this clinical trial is NCT00707239.)

Journal ArticleDOI
TL;DR: Antifungal resistance was more common among emerging species such as those of Scedosporium and Mucorales and also among cryptic species of Aspergillus, with 40% of these isolates showing resistance to all of the antIFungal compounds tested.
Abstract: A population-based survey was conducted to investigate the epidemiology of and antifungal resistance in Spanish clinical strains of filamentous fungi isolated from deep tissue samples, blood cultures, and respiratory samples. The study was conducted in two different periods (October 2010 and May 2011) to analyze seasonal variations. A total of 325 strains were isolated in 29 different hospitals. The average prevalence was 0.016/1,000 inhabitants [corrected]. Strains were identified by sequencing of DNA targets and susceptibility testing by the European Committee for Antimicrobial Susceptibility Testing reference procedure. The most frequently isolated genus was Aspergillus, accounting for 86.3% of the isolates, followed by Scedosporium at 4.7%; the order Mucorales at 2.5%; Penicillium at 2.2%, and Fusarium at 1.2%. The most frequent species was Aspergillus fumigatus (48.5%), followed by A. flavus (8.4%), A. terreus (8.1%), A. tubingensis (6.8%), and A. niger (6.5%). Cryptic/sibling Aspergillus species accounted for 12% of the cases. Resistance to amphotericin B was found in 10.8% of the isolates tested, while extended-spectrum triazole resistance ranged from 10 to 12.7%, depending on the azole tested. Antifungal resistance was more common among emerging species such as those of Scedosporium and Mucorales and also among cryptic species of Aspergillus, with 40% of these isolates showing resistance to all of the antifungal compounds tested. Cryptic Aspergillus species seem to be underestimated, and their correct classification could be clinically relevant. The performance of antifungal susceptibility testing of the strains implicated in deep infections and multicentric studies is recommended to evaluate the incidence of these cryptic species in other geographic areas.

Journal ArticleDOI
TL;DR: The expression of OXA-235 in A. baumannii led to reduced carbapenem susceptibility, while cephalosporin MICs were unaffected, and genetic analysis revealed that blaOXA- 235, blaOxA-236, and bla oxacillinase genes might result from a transposition-mediated mechanism.
Abstract: We investigated the mechanism of carbapenem resistance in 10 Acinetobacter baumannii strains isolated from the United States and Mexico between 2005 and 2009. The detection of known metallo-β-lactamase or carbapenem-hydrolyzing oxacillinase (OXA) genes by PCR was negative. The presence of plasmid-encoded carbapenem resistance genes was investigated by transformation of A. baumannii ATCC 17978. Shotgun cloning experiments and sequencing were performed, followed by the expression of a novel β-lactamase in A. baumannii. Three novel OXA enzymes were identified, OXA-235 in 8 isolates and the amino acid variants OXA-236 (Glu173-Val) and OXA-237 (Asp208-Gly) in 1 isolate each. The deduced amino acid sequences shared 85% identity with OXA-134, 54% to 57% identities with the acquired OXA-23, OXA-24, OXA-58, and OXA-143, and 56% identity with the intrinsic OXA-51 and, thus, represent a novel subclass of OXA. The expression of OXA-235 in A. baumannii led to reduced carbapenem susceptibility, while cephalosporin MICs were unaffected. Genetic analysis revealed that blaOXA-235, blaOXA-236, and blaOXA-237 were bracketed between two ISAba1 insertion sequences. In addition, the presence of these acquired β-lactamase genes might result from a transposition-mediated mechanism. This highlights the propensity of A. baumannii to acquire multiple carbapenem resistance determinants.

Journal ArticleDOI
TL;DR: The efficacy of blue light at 415 nm for the treatment of acute, potentially lethal Pseudomonas aeruginosa burn infections in mice is demonstrated and it is suggested that blue light therapy might offer an effective and safe alternative to conventional antimicrobial therapy for P. aerug inosa burns.
Abstract: Blue light has attracted increasing attention due to its intrinsic antimicrobial effect without the addition of exogenous photosensitizers. However, the use of blue light for wound infections has not been established yet. In this study, we demonstrated the efficacy of blue light at 415 nm for the treatment of acute, potentially lethal Pseudomonas aeruginosa burn infections in mice. Our in vitro studies demonstrated that the inactivation rate of P. aeruginosa cells by blue light was approximately 35-fold higher than that of keratinocytes (P = 0.0014). Transmission electron microscopy revealed blue light-mediated intracellular damage to P. aeruginosa cells. Fluorescence spectroscopy suggested that coproporphyrin III and/or uroporphyrin III are possibly the intracellular photosensitive chromophores associated with the blue light inactivation of P. aeruginosa. In vivo studies using an in vivo bioluminescence imaging technique and an area-under-the-bioluminescence-time-curve (AUBC) analysis showed that a single exposure of blue light at 55.8 J/cm(2), applied 30 min after bacterial inoculation to the infected mouse burns, reduced the AUBC by approximately 100-fold in comparison with untreated and infected mouse burns (P < 0.0001). Histological analyses and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays indicated no significant damage in the mouse skin exposed to blue light at the effective antimicrobial dose. Survival analyses revealed that blue light increased the survival rate of the infected mice from 18.2% to 100% (P < 0.0001). In conclusion, blue light therapy might offer an effective and safe alternative to conventional antimicrobial therapy for P. aeruginosa burn infections.

Journal ArticleDOI
TL;DR: The high incidence of AdeABC efflux pump overexpression in MDR A. baumannii is outlined as a result of a variety of single mutations in the corresponding two-component regulatory system.
Abstract: Increased expression of chromosomal genes for resistance-nodulation-cell division (RND)-type efflux systems plays a major role in the multidrug resistance (MDR) of Acinetobacter baumannii. However, the relative contributions of the three most prevalent pumps, AdeABC, AdeFGH, and AdeIJK, have not been evaluated in clinical settings. We have screened 14 MDR clinical isolates shown to be distinct on the basis of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) for the presence and overexpression of the three Ade efflux systems and analyzed the sequences of the regulators AdeRS, a two-component system, for AdeABC and AdeL, a LysR-type regulator, for AdeFGH. Gene adeB was detected in 13 of 14 isolates, and adeG and the intrinsic adeJ gene were detected in all strains. Significant overexpression of adeB was observed in 10 strains, whereas only 7 had moderately increased levels of expression of AdeFGH, and none overexpressed AdeIJK. Thirteen strains had reduced susceptibility to tigecycline, but there was no correlation between tigecycline MICs and the levels of AdeABC expression, suggesting the presence of other mechanisms for tigecycline resistance. No mutations were found in the highly conserved LysR regulator of the nine strains expressing AdeFGH. In contrast, functional mutations were found in conserved domains of AdeRS in all the strains that overexpressed AdeABC with two mutational hot spots, one in AdeS near histidine 149 suggesting convergent evolution and the other in the DNA binding domain of AdeR compatible with horizontal gene transfer. This report outlines the high incidence of AdeABC efflux pump overexpression in MDR A. baumannii as a result of a variety of single mutations in the corresponding two-component regulatory system.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the evidence of in vitro synergy of polymyxin-carbapenem combination therapy against Gram-negative bacteria (GNB) using a systematic review and meta-analysis.
Abstract: Our objective was to examine the evidence of in vitro synergy of polymyxin-carbapenem combination therapy against Gram-negative bacteria (GNB). A systematic review and meta-analysis were performed. All studies examining in vitro interactions of antibiotic combinations consisting of any carbapenem with colistin or polymyxin B against any GNB were used. A broad search was conducted with no language, date, or publication status restrictions. Synergy rates, defined as a fractional inhibitory concentration index of ≤0.5 or a >2-log reduction in CFU, were pooled separately for time-kill, checkerboard, and Etest methods in a mixed-effect meta-analysis of rates. We examined whether the synergy rate depended on the testing method, type of antibiotic, bacteria, and resistance to carbapenems. Pooled rates with 95% confidence intervals (CI) are shown. Thirty-nine published studies and 15 conference proceeding were included, reporting on 246 different tests on 1,054 bacterial isolates. In time-kill studies, combination therapy showed synergy rates of 77% (95% CI, 64 to 87%) for Acinetobacter baumannii, 44% (95% CI, 30 to 59%) for Klebsiella pneumoniae, and 50% (95% CI, 30 to 69%) for Pseudomonas aeruginosa, with low antagonism rates for all. Doripenem showed high synergy rates for all three bacteria. For A. baumannii, meropenem was more synergistic than imipenem, whereas for P. aeruginosa the opposite was true. Checkerboard and Etest studies generally reported lower synergy rates than time-kill studies. The use of combination therapy led to less resistance development in vitro. The combination of a carbapenem with a polymyxin against GNB, especially A. baumannii, is supported in vitro by high synergy rates, with low antagonism and less resistance development. These findings should be examined in clinical studies.

Journal ArticleDOI
TL;DR: A role for rpoC mutations in the transmission of multidrug-resistant tuberculosis is supported and illustrates how epistatic interactions between drug resistance-conferring mutations, compensatory mutations, and different strain genetic backgrounds might influence compensatory evolution in drug-resistant M. tuberculosis.
Abstract: Rifampin resistance in clinical isolates of Mycobacterium tuberculosis arises primarily through the selection of bacterial variants harboring mutations in the 81-bp rifampin resistance-determining region of the rpoB gene. While these mutations were shown to infer a fitness cost in the absence of antibiotic pressure, compensatory mutations in rpoA and rpoC were identified which restore the fitness of rifampin-resistant bacteria carrying mutations in rpoB. To investigate the epidemiological relevance of these compensatory mutations, we analyzed 286 drug-resistant and 54 drug-susceptible clinical M. tuberculosis isolates from the Western Cape, South Africa, a high-incidence setting of multidrug-resistant tuberculosis. Sequencing of a portion of the RpoA-RpoC interaction region of the rpoC gene revealed that 23.5% of all rifampin-resistant isolates tested carried a nonsynonymous mutation in this region. These putative compensatory mutations in rpoC were associated with transmission, as 30.8% of all rifampin-resistant isolates with an IS6110 restriction fragment length polymorphism (RFLP) pattern belonging to a recognized RFLP cluster harbored putative rpoC mutations. Such mutations were present in only 9.4% of rifampin-resistant isolates with unique RFLP patterns (P < 0.01). Moreover, these putative compensatory mutations were associated with specific strain genotypes and the rpoB S531L rifampin resistance mutation. Among isolates harboring this rpoB mutation, 44.1% also harbored rpoC mutations, while only 4.1% of the isolates with other rpoB mutations exhibited mutations in rpoC (P < 0.001). Our study supports a role for rpoC mutations in the transmission of multidrug-resistant tuberculosis and illustrates how epistatic interactions between drug resistance-conferring mutations, compensatory mutations, and different strain genetic backgrounds might influence compensatory evolution in drug-resistant M. tuberculosis.

Journal ArticleDOI
TL;DR: Eravacycline has the potential to be a promising new intravenous (i.v.)/oral antibiotic for the empirical treatment of complicated hospital/health care infections and moderate-to-severe community-acquired infections.
Abstract: Eravacycline (TP-434 or 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline) is a novel fluorocycline that was evaluated for antimicrobial activity against panels of recently isolated aerobic and anaerobic Gram-negative and Gram-positive bacteria. Eravacycline showed potent broad-spectrum activity against 90% of the isolates (MIC 90 ) in each panel at concentrations ranging from ≤0.008 to 2 μg/ml for all species panels except those of Pseudomonas aeruginosa and Burkholderia cenocepacia (MIC 90 values of 32 μg/ml for both organisms). The antibacterial activity of eravacycline was minimally affected by expression of tetracycline-specific efflux and ribosomal protection mechanisms in clinical isolates. Furthermore, eravacycline was active against multidrug-resistant bacteria, including those expressing extended-spectrum β-lactamases and mechanisms conferring resistance to other classes of antibiotics, including carbapenem resistance. Eravacycline has the potential to be a promising new intravenous (i.v.)/oral antibiotic for the empirical treatment of complicated hospital/health care infections and moderate-to-severe community-acquired infections.

Journal ArticleDOI
TL;DR: Ceftolozane/tazobactam demonstrated high potency and broad-spectrum activity against many contemporary Enterobacteriaceae and P. aeruginosa isolates collected in U.S. medical centers.
Abstract: Ceftolozane/tazobactam, a novel antimicrobial agent with activity against Pseudomonas aeruginosa (including drug-resistant strains) and other common Gram-negative pathogens (including most extended-spectrum-β-lactamase [ESBL]-producing Enterobacteriaceae strains), and comparator agents were susceptibility tested by a reference broth microdilution method against 7,071 Enterobacteriaceae and 1,971 P. aeruginosa isolates. Isolates were collected consecutively from patients in 32 medical centers across the United States during 2011 to 2012. Overall, 15.7% and 8.9% of P. aeruginosa isolates were classified as multidrug resistant (MDR) and extensively drug resistant (XDR), and 8.4% and 1.2% of Enterobacteriaceae were classified as MDR and XDR. No pandrug-resistant (PDR) Enterobacteriaceae isolates and only one PDR P. aeruginosa isolate were detected. Ceftolozane/tazobactam was the most potent (MIC50/90, 0.5/2 μg/ml) agent tested against P. aeruginosa and demonstrated good activity against 310 MDR strains (MIC50/90, 2/8 μg/ml) and 175 XDR strains (MIC50/90, 4/16 μg/ml). Ceftolozane/tazobactam exhibited high overall activity (MIC50/90, 0.25/1 μg/ml) against Enterobacteriaceae and retained activity (MIC50/90, 4/>32 μg/ml) against many 601 MDR strains but not against the 86 XDR strains (MIC50, >32 μg/ml). Ceftolozane/tazobactam was highly potent (MIC50/90, 0.25/0.5 μg/ml) against 2,691 Escherichia coli isolates and retained good activity against most ESBL-phenotype E. coli isolates (MIC50/90, 0.5/4 μg/ml), but activity was low against ESBL-phenotype Klebsiella pneumoniae isolates (MIC50/90, 32/>32 μg/ml), explained by the high rate (39.8%) of meropenem coresistance observed in this species phenotype. In summary, ceftolozane/tazobactam demonstrated high potency and broad-spectrum activity against many contemporary Enterobacteriaceae and P. aeruginosa isolates collected in U.S. medical centers. Importantly, ceftolozane/tazobactam retained potency against many MDR and XDR strains.

Journal ArticleDOI
TL;DR: It seems highly likely that the use of the CLSI species-specific caspofungin CBPs could lead to reporting an excessive number of wild-type (WT) isolates (e.g., C. glabrata and C. krusei) as either non-WT or resistant isolates.
Abstract: Although Clinical and Laboratory Standards Institute (CLSI) clinical breakpoints (CBPs) are available for interpreting echinocandin MICs for Candida spp., epidemiologic cutoff values (ECVs) based on collective MIC data from multiple laboratories have not been defined. While collating CLSI caspofungin MICs for 145 to 11,550 Candida isolates from 17 laboratories (Brazil, Canada, Europe, Mexico, Peru, and the United States), we observed an extraordinary amount of modal variability (wide ranges) among laboratories as well as truncated and bimodal MIC distributions. The species-specific modes across different laboratories ranged from 0.016 to 0.5 μg/ml for C. albicans and C. tropicalis, 0.031 to 0.5 μg/ml for C. glabrata, and 0.063 to 1 μg/ml for C. krusei. Variability was also similar among MIC distributions for C. dubliniensis and C. lusitaniae. The exceptions were C. parapsilosis and C. guilliermondii MIC distributions, where most modes were within one 2-fold dilution of each other. These findings were consistent with available data from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (403 to 2,556 MICs) for C. albicans, C. glabrata, C. krusei, and C. tropicalis. Although many factors (caspofungin powder source, stock solution solvent, powder storage time length and temperature, and MIC determination testing parameters) were examined as a potential cause of such unprecedented variability, a single specific cause was not identified. Therefore, it seems highly likely that the use of the CLSI species-specific caspofungin CBPs could lead to reporting an excessive number of wild-type (WT) isolates (e.g., C. glabrata and C. krusei) as either non-WT or resistant isolates. Until this problem is resolved, routine testing or reporting of CLSI caspofungin MICs for Candida is not recommended; micafungin or anidulafungin data could be used instead.

Journal ArticleDOI
TL;DR: The structures of two clinically important β-lactamase enzymes bound to avibactam are described and the structures reveal similar binding modes in both enzymes and thus provide a rationale for the broad-spectrum inhibitory activity of avibactsam, which has recently been shown to be a reversible inhibitor.
Abstract: Although β-lactams have been the most effective class of antibacterial agents used in clinical practice for the past half century, their effectiveness on Gram-negative bacteria has been eroded due to the emergence and spread of β-lactamase enzymes that are not affected by currently marketed β-lactam/β-lactamase inhibitor combinations. Avibactam is a novel, covalent, non-β-lactam β-lactamase inhibitor presently in clinical development in combination with either ceftaroline or ceftazidime. In vitro studies show that avibactam may restore the broad-spectrum activity of cephalosporins against class A, class C, and some class D β-lactamases. Here we describe the structures of two clinically important β-lactamase enzymes bound to avibactam, the class A CTX-M-15 extended-spectrum β-lactamase and the class C Pseudomonas aeruginosa AmpC β-lactamase, which together provide insight into the binding modes for the respective enzyme classes. The structures reveal similar binding modes in both enzymes and thus provide a rationale for the broad-spectrum inhibitory activity of avibactam. Identification of the key residues surrounding the binding pocket allows for a better understanding of the potency of this scaffold. Finally, avibactam has recently been shown to be a reversible inhibitor, and the structures provide insights into the mechanism of avibactam recyclization. Analysis of the ultra-high-resolution CTX-M-15 structure suggests how the deacylation mechanism favors recyclization over hydrolysis.

Journal ArticleDOI
TL;DR: These findings show firstly that the antimalarial responses of male and female gametocytes differ and secondly that the mature male gametocyte should be considered a more vulnerable target than the femalegametocyte for transmission-blocking drugs.
Abstract: It is the mature gametocytes of Plasmodium that are solely responsible for parasite transmission from the mammalian host to the mosquito. They are therefore a logical target for transmission-blocking antimalarial interventions, which aim to break the cycle of reinfection and reduce the prevalence of malaria cases. Gametocytes, however, are not a homogeneous cell population. They are sexually dimorphic, and both males and females are required for parasite transmission. Using two bioassays, we explored the effects of 20 antimalarials on the functional viability of both male and female mature gametocytes of Plasmodium falciparum. We show that mature male gametocytes (as reported by their ability to produce male gametes, i.e., to exflagellate) are sensitive to antifolates, some endoperoxides, methylene blue, and thiostrepton, with submicromolar 50% inhibitory concentrations (IC50s), whereas female gametocytes (as reported by their ability to activate and form gametes expressing the marker Pfs25) are much less sensitive to antimalarial intervention, with only methylene blue and thiostrepton showing any significant activity. These findings show firstly that the antimalarial responses of male and female gametocytes differ and secondly that the mature male gametocyte should be considered a more vulnerable target than the female gametocyte for transmission-blocking drugs. Given the female-biased sex ratio of Plasmodium falciparum (∼3 to 5 females:1 male), current gametocyte assays without a sex-specific readout are unlikely to identify male-targeted compounds and prioritize them for further development. Both assays reported here are being scaled up to at least medium throughput and will permit identification of key transmission-blocking molecules that have been overlooked by other screening campaigns.

Journal ArticleDOI
TL;DR: Significant differences between measured and predicted unbound drug concentrations were found only for the highly protein-bound beta-lactams ceftriaxone and flucloxacillin, and direct measurement of un bound drug in research and clinical practice is suggested for selected beta- lactams.
Abstract: The use of therapeutic drug monitoring (TDM) to optimize beta-lactam dosing in critically ill patients is growing in popularity, although there are limited data describing the potential impact of altered protein binding on achievement of target concentrations. The aim of this study was to compare the measured unbound concentration to the unbound concentration predicted from published protein binding values for seven beta-lactams using data from blood samples obtained from critically ill patients. From 161 eligible patients, we obtained 228 and 220 plasma samples at the midpoint of the dosing interval and trough, respectively, for ceftriaxone, cefazolin, meropenem, piperacillin, ampicillin, benzylpenicillin, and flucloxacillin. The total and unbound beta-lactam concentrations were measured using validated methods. Variabilities in both unbound and total concentrations were marked for all antibiotics, with significant differences being present between measured and predicted unbound concentrations for ceftriaxone and for flucloxacillin at the mid-dosing interval (P<0.05). The predictive performance for calculating unbound concentrations using published protein binding values was poor, with bias for overprediction of unbound concentrations for ceftriaxone (83.3%), flucloxacillin (56.8%), and benzylpenicillin (25%) and underprediction for meropenem (12.1%). Linear correlations between the measured total and unbound concentrations were observed for all beta-lactams (R2= 0.81 to 1.00; P<0.05) except ceftriaxone and flucloxacillin. The percent protein binding of flucloxacillin and the plasma albumin concentration were also found to be linearly correlated (R2=0.776; P<0.01). In conclusion, significant differences between measured and predicted unbound drug concentrations were found only for the highly protein-bound beta-lactams ceftriaxone and flucloxacillin. However, direct measurement of unbound drug in research and clinical practice is suggested for selected beta-lactams.

Journal ArticleDOI
TL;DR: Clinicians should be aware that the current target AUC/MIC of ≥400 was derived using the reference BMD method, so adjustments to this target need to be made when calculating A UC/MIC ratio using other MIC testing methods.
Abstract: A ratio of the vancomycin area under the concentration-time curve to the MIC (AUC/MIC) of ≥400 has been associated with clinical success when treating Staphylococcus aureus pneumonia, and this target was recommended by recently published vancomycin therapeutic monitoring consensus guidelines for treating all serious S. aureus infections. Here, vancomycin serum trough levels and vancomycin AUC/MIC were evaluated in a “real-world” context by following a cohort of 182 patients with S. aureus bacteremia (SAB) and analyzing these parameters within the critical first 96 h of vancomycin therapy. The median vancomycin trough level at this time point was 19.5 mg/liter. There was a significant difference in vancomycin AUC/MIC when using broth microdilution (BMD) compared with Etest MIC (medians of 436.1 and 271.5, respectively; P 373, derived using classification and regression tree analysis, was associated with reduced mortality (P = 0.043) and remained significant in a multivariable model. This study demonstrated that we obtained vancomycin trough levels in the target therapeutic range early during the course of therapy and that obtaining a higher vancomycin AUC/MIC (in this case, >373) within 96 h was associated with reduced mortality. The MIC test method has a significant impact on vancomycin AUC/MIC estimation. Clinicians should be aware that the current target AUC/MIC of ≥400 was derived using the reference BMD method, so adjustments to this target need to be made when calculating AUC/MIC ratio using other MIC testing methods.

Journal ArticleDOI
TL;DR: A novel bacteriophage lysin (PlySs2), derived from a Streptococcus suis phage, with broad lytic activity against MRSA, vancomycin-intermediate S. aureus, and other Gram-positive pathogens is identified.
Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pyogenes (group A streptococcus [GrAS]) cause serious and sometimes fatal human diseases. They are among the many Gram-positive pathogens for which resistance to leading antibiotics has emerged. As a result, alternative therapies need to be developed to combat these pathogens. We have identified a novel bacteriophage lysin (PlySs2), derived from a Streptococcus suis phage, with broad lytic activity against MRSA, vancomycin-intermediate S. aureus (VISA), Streptococcus suis, Listeria, Staphylococcus simulans, Staphylococcus epidermidis, Streptococcus equi, Streptococcus agalactiae (group B streptococcus [GBS]), S. pyogenes, Streptococcus sanguinis, group G streptococci (GGS), group E streptococci (GES), and Streptococcus pneumoniae. PlySs2 has an N-terminal cysteine-histidine aminopeptidase (CHAP) catalytic domain and a C-terminal SH3b binding domain. It is stable at 50°C for 30 min, 37°C for >24 h, 4°C for 15 days, and −80°C for >7 months; it maintained full activity after 10 freeze-thaw cycles. PlySs2 at 128 μg/ml in vitro reduced MRSA and S. pyogenes growth by 5 logs and 3 logs within 1 h, respectively, and exhibited a MIC of 16 μg/ml for MRSA. A single, 2-mg dose of PlySs2 protected 92% (22/24) of the mice in a bacteremia model of mixed MRSA and S. pyogenes infection. Serially increasing exposure of MRSA and S. pyogenes to PlySs2 or mupirocin resulted in no observed resistance to PlySs2 and resistance to mupirocin. To date, no other lysin has shown such notable broad lytic activity, stability, and efficacy against multiple, leading, human bacterial pathogens; as such, PlySs2 has all the characteristics to be an effective therapeutic.

Journal ArticleDOI
TL;DR: Although dihydroartemisinin-piperaquine appears to be an appropriate new first-line treatment for P. vivax in Cambodia, alternative treatments are urgently needed forP.
Abstract: We describe here the results of antimalarial therapeutic efficacy studies conducted in Cambodia from 2008 to 2010. A total of 15 studies in four sentinel sites were conducted using dihydroartemisinin-piperaquine (DP) for the treatment of Plasmodium falciparum infection and chloroquine (CQ) and DP for the treatment of P. vivax infection. All studies were performed according to the standard World Health Organization protocol for the assessment of antimalarial treatment efficacy. Among the studies of DP for the treatment of P. falciparum, an increase in treatment failure was observed in the western provinces. In 2010, the PCR-corrected treatment failure rates for DP on day 42 were 25% (95% confidence interval [CI] = 10 to 51%) in Pailin and 10.7% (95% CI = 4 to 23%) in Pursat, while the therapeutic efficacy of DP remained high (100%) in Ratanakiri and Preah Vihear provinces, located in northern and eastern Cambodia. For the studies of P. vivax, the day 28 uncorrected treatment failure rate among patients treated with CQ ranged from 4.4 to 17.4%; DP remained 100% effective in all sites. Further study is required to investigate suspected P. falciparum resistance to piperaquine in western Cambodia; the results of in vitro and molecular studies were not found to support the therapeutic efficacy findings. The emergence of artemisinin resistance in this region has likely put additional pressure on piperaquine. Although DP appears to be an appropriate new first-line treatment for P. vivax in Cambodia, alternative treatments are urgently needed for P. falciparum-infected patients in western Cambodia.

Journal ArticleDOI
TL;DR: Emergence of CTX-M-15, CMY-2-, and NDM-1-producing Enterobacteriaceae isolates is of major concern and highlights the need for further surveillance in this area.
Abstract: The increasing trend of β-lactam resistance among Enterobacteriaceae is a worldwide threat Enterobacteriaceae isolates causing intra-abdominal infections (IAI) from the Study for Monitoring Antimicrobial Resistance Trends (SMART) collected in 2008 and 2009 from the Asia-Pacific region were investigated Detection of extended-spectrum β-lactamases (ESBLs), AmpC β-lactamases, and carbapenemases was performed by multiplex PCR A total of 699 Enterobacteriaceae isolates with positive genotypic results, included Escherichia coli (n = 443), Klebsiella pneumoniae (n = 187), Enterobacter cloacae (n = 45), Klebsiella oxytoca (n = 9), Citrobacter freundii (n = 5), Proteus mirabilis (n = 3), Enterobacter aerogenes (n = 2), Morganella morganii (n = 2), and one each of Enterobacter asburiae, Proteus vulgaris, and Providencia rettgeri were analyzed Nearly 20% of these β-lactamase-producing Enterobacteriaceae isolates were from community-associated IAI CTX-M (588 isolates, including 428 [728%] with CTX-M-15) was the most common ESBL, followed by SHV (n = 59) and TEM (n = 4) CMY (n = 110, including 102 [927%] with CMY-2) was the most common AmpC β-lactamase, followed by DHA (n = 46) and ACT/MIR (n = 40) NDM (n = 65, including 62 [954%] with NDM-1) was the most common carbapenemase, followed by IMP (n = 7) and OXA (n = 7) Isolates from hospital-associated IAI had more complicated β-lactamase combinations than isolates from the community Carbapenemases were all exclusively detected in Enterobacteriaceae isolates from India, except that IMP β-lactamases were also detected in Philippines and Australia CTX-M β-lactamases were the predominant ESBLs produced by Enterobacteriaceae causing IAI in the Asia-Pacific region Emergence of CTX-M-15-, CMY-2-, and NDM-1-producing Enterobacteriaceae isolates is of major concern and highlights the need for further surveillance in this area